Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ACTIVE(dbls(cons(X, Y))) → DBLS(Y)
FROM(mark(X)) → FROM(X)
ACTIVE(dbls(cons(X, Y))) → MARK(cons(dbl(X), dbls(Y)))
MARK(indx(X1, X2)) → MARK(X1)
FROM(active(X)) → FROM(X)
CONS(X1, mark(X2)) → CONS(X1, X2)
ACTIVE(indx(cons(X, Y), Z)) → SEL(X, Z)
DBL(active(X)) → DBL(X)
DBL(mark(X)) → DBL(X)
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(indx(X1, X2)) → INDX(mark(X1), X2)
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(dbls(X)) → ACTIVE(dbls(mark(X)))
MARK(sel(X1, X2)) → MARK(X1)
S(active(X)) → S(X)
ACTIVE(dbls(nil)) → MARK(nil)
DBLS(active(X)) → DBLS(X)
MARK(dbl(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(X))
INDX(mark(X1), X2) → INDX(X1, X2)
ACTIVE(dbl(s(X))) → DBL(X)
ACTIVE(dbl(s(X))) → MARK(s(s(dbl(X))))
CONS(active(X1), X2) → CONS(X1, X2)
MARK(indx(X1, X2)) → ACTIVE(indx(mark(X1), X2))
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
INDX(X1, mark(X2)) → INDX(X1, X2)
ACTIVE(dbls(cons(X, Y))) → DBL(X)
ACTIVE(from(X)) → FROM(s(X))
ACTIVE(dbl(s(X))) → S(dbl(X))
SEL(mark(X1), X2) → SEL(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(dbl(0)) → MARK(0)
SEL(X1, active(X2)) → SEL(X1, X2)
MARK(dbls(X)) → MARK(X)
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
CONS(X1, active(X2)) → CONS(X1, X2)
MARK(dbls(X)) → DBLS(mark(X))
ACTIVE(indx(cons(X, Y), Z)) → INDX(Y, Z)
SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)
INDX(X1, active(X2)) → INDX(X1, X2)
ACTIVE(dbls(cons(X, Y))) → CONS(dbl(X), dbls(Y))
MARK(dbl(X)) → DBL(mark(X))
DBLS(mark(X)) → DBLS(X)
S(mark(X)) → S(X)
ACTIVE(indx(cons(X, Y), Z)) → CONS(sel(X, Z), indx(Y, Z))
ACTIVE(dbl(s(X))) → S(s(dbl(X)))
INDX(active(X1), X2) → INDX(X1, X2)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(from(X)) → S(X)
MARK(dbl(X)) → ACTIVE(dbl(mark(X)))
MARK(sel(X1, X2)) → SEL(mark(X1), mark(X2))
MARK(0) → ACTIVE(0)
MARK(from(X)) → ACTIVE(from(X))
ACTIVE(indx(nil, X)) → MARK(nil)
ACTIVE(sel(s(X), cons(Y, Z))) → SEL(X, Z)
MARK(nil) → ACTIVE(nil)
ACTIVE(from(X)) → CONS(X, from(s(X)))
MARK(sel(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(dbls(cons(X, Y))) → DBLS(Y)
FROM(mark(X)) → FROM(X)
ACTIVE(dbls(cons(X, Y))) → MARK(cons(dbl(X), dbls(Y)))
MARK(indx(X1, X2)) → MARK(X1)
FROM(active(X)) → FROM(X)
CONS(X1, mark(X2)) → CONS(X1, X2)
ACTIVE(indx(cons(X, Y), Z)) → SEL(X, Z)
DBL(active(X)) → DBL(X)
DBL(mark(X)) → DBL(X)
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(indx(X1, X2)) → INDX(mark(X1), X2)
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(dbls(X)) → ACTIVE(dbls(mark(X)))
MARK(sel(X1, X2)) → MARK(X1)
S(active(X)) → S(X)
ACTIVE(dbls(nil)) → MARK(nil)
DBLS(active(X)) → DBLS(X)
MARK(dbl(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(X))
INDX(mark(X1), X2) → INDX(X1, X2)
ACTIVE(dbl(s(X))) → DBL(X)
ACTIVE(dbl(s(X))) → MARK(s(s(dbl(X))))
CONS(active(X1), X2) → CONS(X1, X2)
MARK(indx(X1, X2)) → ACTIVE(indx(mark(X1), X2))
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
INDX(X1, mark(X2)) → INDX(X1, X2)
ACTIVE(dbls(cons(X, Y))) → DBL(X)
ACTIVE(from(X)) → FROM(s(X))
ACTIVE(dbl(s(X))) → S(dbl(X))
SEL(mark(X1), X2) → SEL(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(dbl(0)) → MARK(0)
SEL(X1, active(X2)) → SEL(X1, X2)
MARK(dbls(X)) → MARK(X)
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
CONS(X1, active(X2)) → CONS(X1, X2)
MARK(dbls(X)) → DBLS(mark(X))
ACTIVE(indx(cons(X, Y), Z)) → INDX(Y, Z)
SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)
INDX(X1, active(X2)) → INDX(X1, X2)
ACTIVE(dbls(cons(X, Y))) → CONS(dbl(X), dbls(Y))
MARK(dbl(X)) → DBL(mark(X))
DBLS(mark(X)) → DBLS(X)
S(mark(X)) → S(X)
ACTIVE(indx(cons(X, Y), Z)) → CONS(sel(X, Z), indx(Y, Z))
ACTIVE(dbl(s(X))) → S(s(dbl(X)))
INDX(active(X1), X2) → INDX(X1, X2)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(from(X)) → S(X)
MARK(dbl(X)) → ACTIVE(dbl(mark(X)))
MARK(sel(X1, X2)) → SEL(mark(X1), mark(X2))
MARK(0) → ACTIVE(0)
MARK(from(X)) → ACTIVE(from(X))
ACTIVE(indx(nil, X)) → MARK(nil)
ACTIVE(sel(s(X), cons(Y, Z))) → SEL(X, Z)
MARK(nil) → ACTIVE(nil)
ACTIVE(from(X)) → CONS(X, from(s(X)))
MARK(sel(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 8 SCCs with 22 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FROM(mark(X)) → FROM(X)
FROM(active(X)) → FROM(X)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FROM(mark(X)) → FROM(X)
FROM(active(X)) → FROM(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

INDX(X1, active(X2)) → INDX(X1, X2)
INDX(active(X1), X2) → INDX(X1, X2)
INDX(mark(X1), X2) → INDX(X1, X2)
INDX(X1, mark(X2)) → INDX(X1, X2)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

INDX(active(X1), X2) → INDX(X1, X2)
INDX(X1, active(X2)) → INDX(X1, X2)
INDX(mark(X1), X2) → INDX(X1, X2)
INDX(X1, mark(X2)) → INDX(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SEL(mark(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)
SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SEL(mark(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)
SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, active(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DBLS(mark(X)) → DBLS(X)
DBLS(active(X)) → DBLS(X)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DBLS(mark(X)) → DBLS(X)
DBLS(active(X)) → DBLS(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)
S(active(X)) → S(X)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DBL(mark(X)) → DBL(X)
DBL(active(X)) → DBL(X)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DBL(mark(X)) → DBL(X)
DBL(active(X)) → DBL(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(sel(X1, X2)) → MARK(X1)
ACTIVE(dbls(cons(X, Y))) → MARK(cons(dbl(X), dbls(Y)))
MARK(indx(X1, X2)) → MARK(X1)
MARK(dbl(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(X))
MARK(dbls(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
MARK(dbl(X)) → ACTIVE(dbl(mark(X)))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
ACTIVE(dbl(s(X))) → MARK(s(s(dbl(X))))
MARK(from(X)) → ACTIVE(from(X))
MARK(indx(X1, X2)) → ACTIVE(indx(mark(X1), X2))
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(sel(X1, X2)) → MARK(X2)
MARK(dbls(X)) → ACTIVE(dbls(mark(X)))

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(s(X)) → ACTIVE(s(X))
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
The remaining pairs can at least be oriented weakly.

MARK(sel(X1, X2)) → MARK(X1)
ACTIVE(dbls(cons(X, Y))) → MARK(cons(dbl(X), dbls(Y)))
MARK(indx(X1, X2)) → MARK(X1)
MARK(dbl(X)) → MARK(X)
MARK(dbls(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
MARK(dbl(X)) → ACTIVE(dbl(mark(X)))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
ACTIVE(dbl(s(X))) → MARK(s(s(dbl(X))))
MARK(from(X)) → ACTIVE(from(X))
MARK(indx(X1, X2)) → ACTIVE(indx(mark(X1), X2))
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(sel(X1, X2)) → MARK(X2)
MARK(dbls(X)) → ACTIVE(dbls(mark(X)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = 1   
POL(active(x1)) = 0   
POL(cons(x1, x2)) = 0   
POL(dbl(x1)) = 1   
POL(dbls(x1)) = 1   
POL(from(x1)) = 1   
POL(indx(x1, x2)) = 1   
POL(mark(x1)) = 0   
POL(nil) = 0   
POL(s(x1)) = 0   
POL(sel(x1, x2)) = 1   

The following usable rules [17] were oriented:

cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
indx(X1, mark(X2)) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
from(active(X)) → from(X)
from(mark(X)) → from(X)
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

MARK(sel(X1, X2)) → MARK(X1)
ACTIVE(dbls(cons(X, Y))) → MARK(cons(dbl(X), dbls(Y)))
MARK(indx(X1, X2)) → MARK(X1)
MARK(dbl(X)) → MARK(X)
MARK(dbls(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
MARK(dbl(X)) → ACTIVE(dbl(mark(X)))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
ACTIVE(dbl(s(X))) → MARK(s(s(dbl(X))))
MARK(from(X)) → ACTIVE(from(X))
MARK(indx(X1, X2)) → ACTIVE(indx(mark(X1), X2))
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(dbls(X)) → ACTIVE(dbls(mark(X)))
MARK(sel(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVE(dbls(cons(X, Y))) → MARK(cons(dbl(X), dbls(Y))) at position [0] we obtained the following new rules:

ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
QDP
                    ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

MARK(sel(X1, X2)) → MARK(X1)
MARK(indx(X1, X2)) → MARK(X1)
MARK(dbl(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
MARK(dbls(X)) → MARK(X)
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(dbl(X)) → ACTIVE(dbl(mark(X)))
ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
ACTIVE(dbl(s(X))) → MARK(s(s(dbl(X))))
MARK(from(X)) → ACTIVE(from(X))
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
MARK(indx(X1, X2)) → ACTIVE(indx(mark(X1), X2))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(sel(X1, X2)) → MARK(X2)
MARK(dbls(X)) → ACTIVE(dbls(mark(X)))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2))) at position [0] we obtained the following new rules:

MARK(sel(y0, cons(x0, x1))) → ACTIVE(sel(mark(y0), active(cons(x0, x1))))
MARK(sel(sel(x0, x1), y1)) → ACTIVE(sel(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(sel(dbl(x0), y1)) → ACTIVE(sel(active(dbl(mark(x0))), mark(y1)))
MARK(sel(cons(x0, x1), y1)) → ACTIVE(sel(active(cons(x0, x1)), mark(y1)))
MARK(sel(y0, dbls(x0))) → ACTIVE(sel(mark(y0), active(dbls(mark(x0)))))
MARK(sel(from(x0), y1)) → ACTIVE(sel(active(from(x0)), mark(y1)))
MARK(sel(indx(x0, x1), y1)) → ACTIVE(sel(active(indx(mark(x0), x1)), mark(y1)))
MARK(sel(y0, s(x0))) → ACTIVE(sel(mark(y0), active(s(x0))))
MARK(sel(y0, dbl(x0))) → ACTIVE(sel(mark(y0), active(dbl(mark(x0)))))
MARK(sel(y0, x1)) → ACTIVE(sel(mark(y0), x1))
MARK(sel(s(x0), y1)) → ACTIVE(sel(active(s(x0)), mark(y1)))
MARK(sel(x0, y1)) → ACTIVE(sel(x0, mark(y1)))
MARK(sel(y0, indx(x0, x1))) → ACTIVE(sel(mark(y0), active(indx(mark(x0), x1))))
MARK(sel(y0, from(x0))) → ACTIVE(sel(mark(y0), active(from(x0))))
MARK(sel(y0, sel(x0, x1))) → ACTIVE(sel(mark(y0), active(sel(mark(x0), mark(x1)))))
MARK(sel(y0, nil)) → ACTIVE(sel(mark(y0), active(nil)))
MARK(sel(nil, y1)) → ACTIVE(sel(active(nil), mark(y1)))
MARK(sel(0, y1)) → ACTIVE(sel(active(0), mark(y1)))
MARK(sel(y0, 0)) → ACTIVE(sel(mark(y0), active(0)))
MARK(sel(dbls(x0), y1)) → ACTIVE(sel(active(dbls(mark(x0))), mark(y1)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
QDP
                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

MARK(sel(y0, cons(x0, x1))) → ACTIVE(sel(mark(y0), active(cons(x0, x1))))
MARK(indx(X1, X2)) → MARK(X1)
MARK(sel(cons(x0, x1), y1)) → ACTIVE(sel(active(cons(x0, x1)), mark(y1)))
MARK(sel(y0, dbls(x0))) → ACTIVE(sel(mark(y0), active(dbls(mark(x0)))))
MARK(sel(from(x0), y1)) → ACTIVE(sel(active(from(x0)), mark(y1)))
MARK(dbls(X)) → MARK(X)
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(y0, x1)) → ACTIVE(sel(mark(y0), x1))
MARK(sel(s(x0), y1)) → ACTIVE(sel(active(s(x0)), mark(y1)))
MARK(sel(y0, indx(x0, x1))) → ACTIVE(sel(mark(y0), active(indx(mark(x0), x1))))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel(y0, 0)) → ACTIVE(sel(mark(y0), active(0)))
MARK(sel(0, y1)) → ACTIVE(sel(active(0), mark(y1)))
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(dbls(X)) → ACTIVE(dbls(mark(X)))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(sel(x0, x1), y1)) → ACTIVE(sel(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(sel(dbl(x0), y1)) → ACTIVE(sel(active(dbl(mark(x0))), mark(y1)))
MARK(dbl(X)) → MARK(X)
MARK(sel(indx(x0, x1), y1)) → ACTIVE(sel(active(indx(mark(x0), x1)), mark(y1)))
MARK(sel(y0, s(x0))) → ACTIVE(sel(mark(y0), active(s(x0))))
MARK(sel(y0, dbl(x0))) → ACTIVE(sel(mark(y0), active(dbl(mark(x0)))))
MARK(sel(x0, y1)) → ACTIVE(sel(x0, mark(y1)))
MARK(dbl(X)) → ACTIVE(dbl(mark(X)))
ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel(y0, from(x0))) → ACTIVE(sel(mark(y0), active(from(x0))))
MARK(sel(y0, sel(x0, x1))) → ACTIVE(sel(mark(y0), active(sel(mark(x0), mark(x1)))))
ACTIVE(dbl(s(X))) → MARK(s(s(dbl(X))))
MARK(sel(nil, y1)) → ACTIVE(sel(active(nil), mark(y1)))
MARK(sel(y0, nil)) → ACTIVE(sel(mark(y0), active(nil)))
MARK(from(X)) → ACTIVE(from(X))
MARK(indx(X1, X2)) → ACTIVE(indx(mark(X1), X2))
MARK(sel(dbls(x0), y1)) → ACTIVE(sel(active(dbls(mark(x0))), mark(y1)))
MARK(sel(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(dbl(X)) → ACTIVE(dbl(mark(X))) at position [0] we obtained the following new rules:

MARK(dbl(indx(x0, x1))) → ACTIVE(dbl(active(indx(mark(x0), x1))))
MARK(dbl(sel(x0, x1))) → ACTIVE(dbl(active(sel(mark(x0), mark(x1)))))
MARK(dbl(0)) → ACTIVE(dbl(active(0)))
MARK(dbl(nil)) → ACTIVE(dbl(active(nil)))
MARK(dbl(x0)) → ACTIVE(dbl(x0))
MARK(dbl(s(x0))) → ACTIVE(dbl(active(s(x0))))
MARK(dbl(from(x0))) → ACTIVE(dbl(active(from(x0))))
MARK(dbl(dbls(x0))) → ACTIVE(dbl(active(dbls(mark(x0)))))
MARK(dbl(cons(x0, x1))) → ACTIVE(dbl(active(cons(x0, x1))))
MARK(dbl(dbl(x0))) → ACTIVE(dbl(active(dbl(mark(x0)))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ Narrowing
QDP
                            ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

MARK(dbl(indx(x0, x1))) → ACTIVE(dbl(active(indx(mark(x0), x1))))
MARK(sel(y0, cons(x0, x1))) → ACTIVE(sel(mark(y0), active(cons(x0, x1))))
MARK(dbl(0)) → ACTIVE(dbl(active(0)))
MARK(indx(X1, X2)) → MARK(X1)
MARK(sel(cons(x0, x1), y1)) → ACTIVE(sel(active(cons(x0, x1)), mark(y1)))
MARK(sel(from(x0), y1)) → ACTIVE(sel(active(from(x0)), mark(y1)))
MARK(sel(y0, dbls(x0))) → ACTIVE(sel(mark(y0), active(dbls(mark(x0)))))
MARK(dbl(dbls(x0))) → ACTIVE(dbl(active(dbls(mark(x0)))))
MARK(dbls(X)) → MARK(X)
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(y0, x1)) → ACTIVE(sel(mark(y0), x1))
MARK(sel(s(x0), y1)) → ACTIVE(sel(active(s(x0)), mark(y1)))
MARK(dbl(sel(x0, x1))) → ACTIVE(dbl(active(sel(mark(x0), mark(x1)))))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(sel(y0, indx(x0, x1))) → ACTIVE(sel(mark(y0), active(indx(mark(x0), x1))))
MARK(dbl(nil)) → ACTIVE(dbl(active(nil)))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel(0, y1)) → ACTIVE(sel(active(0), mark(y1)))
MARK(sel(y0, 0)) → ACTIVE(sel(mark(y0), active(0)))
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(dbl(dbl(x0))) → ACTIVE(dbl(active(dbl(mark(x0)))))
MARK(dbls(X)) → ACTIVE(dbls(mark(X)))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(sel(x0, x1), y1)) → ACTIVE(sel(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(dbl(x0), y1)) → ACTIVE(sel(active(dbl(mark(x0))), mark(y1)))
MARK(dbl(s(x0))) → ACTIVE(dbl(active(s(x0))))
MARK(dbl(x0)) → ACTIVE(dbl(x0))
MARK(dbl(X)) → MARK(X)
MARK(sel(indx(x0, x1), y1)) → ACTIVE(sel(active(indx(mark(x0), x1)), mark(y1)))
MARK(dbl(cons(x0, x1))) → ACTIVE(dbl(active(cons(x0, x1))))
MARK(sel(y0, s(x0))) → ACTIVE(sel(mark(y0), active(s(x0))))
MARK(sel(y0, dbl(x0))) → ACTIVE(sel(mark(y0), active(dbl(mark(x0)))))
MARK(sel(x0, y1)) → ACTIVE(sel(x0, mark(y1)))
ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel(y0, from(x0))) → ACTIVE(sel(mark(y0), active(from(x0))))
MARK(dbl(from(x0))) → ACTIVE(dbl(active(from(x0))))
MARK(sel(y0, sel(x0, x1))) → ACTIVE(sel(mark(y0), active(sel(mark(x0), mark(x1)))))
ACTIVE(dbl(s(X))) → MARK(s(s(dbl(X))))
MARK(from(X)) → ACTIVE(from(X))
MARK(sel(y0, nil)) → ACTIVE(sel(mark(y0), active(nil)))
MARK(sel(nil, y1)) → ACTIVE(sel(active(nil), mark(y1)))
MARK(indx(X1, X2)) → ACTIVE(indx(mark(X1), X2))
MARK(sel(dbls(x0), y1)) → ACTIVE(sel(active(dbls(mark(x0))), mark(y1)))
MARK(sel(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVE(dbl(s(X))) → MARK(s(s(dbl(X)))) at position [0] we obtained the following new rules:

ACTIVE(dbl(s(active(x0)))) → MARK(s(s(dbl(x0))))
ACTIVE(dbl(s(mark(x0)))) → MARK(s(s(dbl(x0))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
QDP
                                ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

MARK(indx(X1, X2)) → MARK(X1)
MARK(sel(cons(x0, x1), y1)) → ACTIVE(sel(active(cons(x0, x1)), mark(y1)))
MARK(sel(from(x0), y1)) → ACTIVE(sel(active(from(x0)), mark(y1)))
MARK(sel(s(x0), y1)) → ACTIVE(sel(active(s(x0)), mark(y1)))
MARK(dbl(sel(x0, x1))) → ACTIVE(dbl(active(sel(mark(x0), mark(x1)))))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(sel(y0, indx(x0, x1))) → ACTIVE(sel(mark(y0), active(indx(mark(x0), x1))))
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(dbl(dbl(x0))) → ACTIVE(dbl(active(dbl(mark(x0)))))
MARK(dbls(X)) → ACTIVE(dbls(mark(X)))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(dbl(x0), y1)) → ACTIVE(sel(active(dbl(mark(x0))), mark(y1)))
MARK(dbl(s(x0))) → ACTIVE(dbl(active(s(x0))))
MARK(dbl(x0)) → ACTIVE(dbl(x0))
MARK(dbl(X)) → MARK(X)
MARK(dbl(cons(x0, x1))) → ACTIVE(dbl(active(cons(x0, x1))))
MARK(sel(y0, s(x0))) → ACTIVE(sel(mark(y0), active(s(x0))))
MARK(sel(y0, dbl(x0))) → ACTIVE(sel(mark(y0), active(dbl(mark(x0)))))
ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(dbl(from(x0))) → ACTIVE(dbl(active(from(x0))))
MARK(sel(y0, sel(x0, x1))) → ACTIVE(sel(mark(y0), active(sel(mark(x0), mark(x1)))))
MARK(indx(X1, X2)) → ACTIVE(indx(mark(X1), X2))
MARK(sel(dbls(x0), y1)) → ACTIVE(sel(active(dbls(mark(x0))), mark(y1)))
MARK(dbl(indx(x0, x1))) → ACTIVE(dbl(active(indx(mark(x0), x1))))
MARK(sel(y0, cons(x0, x1))) → ACTIVE(sel(mark(y0), active(cons(x0, x1))))
MARK(dbl(0)) → ACTIVE(dbl(active(0)))
ACTIVE(dbl(s(active(x0)))) → MARK(s(s(dbl(x0))))
MARK(sel(y0, dbls(x0))) → ACTIVE(sel(mark(y0), active(dbls(mark(x0)))))
MARK(dbl(dbls(x0))) → ACTIVE(dbl(active(dbls(mark(x0)))))
MARK(dbls(X)) → MARK(X)
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(y0, x1)) → ACTIVE(sel(mark(y0), x1))
MARK(dbl(nil)) → ACTIVE(dbl(active(nil)))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel(0, y1)) → ACTIVE(sel(active(0), mark(y1)))
MARK(sel(y0, 0)) → ACTIVE(sel(mark(y0), active(0)))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(sel(x0, x1), y1)) → ACTIVE(sel(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(sel(indx(x0, x1), y1)) → ACTIVE(sel(active(indx(mark(x0), x1)), mark(y1)))
MARK(sel(x0, y1)) → ACTIVE(sel(x0, mark(y1)))
MARK(sel(y0, from(x0))) → ACTIVE(sel(mark(y0), active(from(x0))))
MARK(from(X)) → ACTIVE(from(X))
MARK(sel(y0, nil)) → ACTIVE(sel(mark(y0), active(nil)))
MARK(sel(nil, y1)) → ACTIVE(sel(active(nil), mark(y1)))
MARK(sel(X1, X2)) → MARK(X2)
ACTIVE(dbl(s(mark(x0)))) → MARK(s(s(dbl(x0))))

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(indx(X1, X2)) → ACTIVE(indx(mark(X1), X2)) at position [0] we obtained the following new rules:

MARK(indx(s(x0), y1)) → ACTIVE(indx(active(s(x0)), y1))
MARK(indx(indx(x0, x1), y1)) → ACTIVE(indx(active(indx(mark(x0), x1)), y1))
MARK(indx(cons(x0, x1), y1)) → ACTIVE(indx(active(cons(x0, x1)), y1))
MARK(indx(from(x0), y1)) → ACTIVE(indx(active(from(x0)), y1))
MARK(indx(sel(x0, x1), y1)) → ACTIVE(indx(active(sel(mark(x0), mark(x1))), y1))
MARK(indx(nil, y1)) → ACTIVE(indx(active(nil), y1))
MARK(indx(y0, mark(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(indx(dbl(x0), y1)) → ACTIVE(indx(active(dbl(mark(x0))), y1))
MARK(indx(y0, active(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(indx(0, y1)) → ACTIVE(indx(active(0), y1))
MARK(indx(x0, x1)) → ACTIVE(indx(x0, x1))
MARK(indx(dbls(x0), y1)) → ACTIVE(indx(active(dbls(mark(x0))), y1))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
QDP
                                    ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

MARK(indx(X1, X2)) → MARK(X1)
MARK(sel(cons(x0, x1), y1)) → ACTIVE(sel(active(cons(x0, x1)), mark(y1)))
MARK(sel(from(x0), y1)) → ACTIVE(sel(active(from(x0)), mark(y1)))
MARK(indx(nil, y1)) → ACTIVE(indx(active(nil), y1))
MARK(indx(s(x0), y1)) → ACTIVE(indx(active(s(x0)), y1))
MARK(indx(indx(x0, x1), y1)) → ACTIVE(indx(active(indx(mark(x0), x1)), y1))
MARK(sel(s(x0), y1)) → ACTIVE(sel(active(s(x0)), mark(y1)))
MARK(sel(y0, indx(x0, x1))) → ACTIVE(sel(mark(y0), active(indx(mark(x0), x1))))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(dbl(sel(x0, x1))) → ACTIVE(dbl(active(sel(mark(x0), mark(x1)))))
MARK(indx(dbl(x0), y1)) → ACTIVE(indx(active(dbl(mark(x0))), y1))
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(indx(x0, x1)) → ACTIVE(indx(x0, x1))
MARK(dbls(X)) → ACTIVE(dbls(mark(X)))
MARK(dbl(dbl(x0))) → ACTIVE(dbl(active(dbl(mark(x0)))))
MARK(indx(from(x0), y1)) → ACTIVE(indx(active(from(x0)), y1))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(dbl(x0), y1)) → ACTIVE(sel(active(dbl(mark(x0))), mark(y1)))
MARK(indx(sel(x0, x1), y1)) → ACTIVE(indx(active(sel(mark(x0), mark(x1))), y1))
MARK(dbl(x0)) → ACTIVE(dbl(x0))
MARK(dbl(s(x0))) → ACTIVE(dbl(active(s(x0))))
MARK(dbl(X)) → MARK(X)
MARK(dbl(cons(x0, x1))) → ACTIVE(dbl(active(cons(x0, x1))))
MARK(sel(y0, s(x0))) → ACTIVE(sel(mark(y0), active(s(x0))))
MARK(sel(y0, dbl(x0))) → ACTIVE(sel(mark(y0), active(dbl(mark(x0)))))
ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel(y0, sel(x0, x1))) → ACTIVE(sel(mark(y0), active(sel(mark(x0), mark(x1)))))
MARK(dbl(from(x0))) → ACTIVE(dbl(active(from(x0))))
MARK(sel(dbls(x0), y1)) → ACTIVE(sel(active(dbls(mark(x0))), mark(y1)))
MARK(dbl(indx(x0, x1))) → ACTIVE(dbl(active(indx(mark(x0), x1))))
MARK(sel(y0, cons(x0, x1))) → ACTIVE(sel(mark(y0), active(cons(x0, x1))))
MARK(dbl(0)) → ACTIVE(dbl(active(0)))
ACTIVE(dbl(s(active(x0)))) → MARK(s(s(dbl(x0))))
MARK(sel(y0, dbls(x0))) → ACTIVE(sel(mark(y0), active(dbls(mark(x0)))))
MARK(dbl(dbls(x0))) → ACTIVE(dbl(active(dbls(mark(x0)))))
MARK(dbls(X)) → MARK(X)
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
MARK(indx(dbls(x0), y1)) → ACTIVE(indx(active(dbls(mark(x0))), y1))
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(y0, x1)) → ACTIVE(sel(mark(y0), x1))
MARK(dbl(nil)) → ACTIVE(dbl(active(nil)))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel(y0, 0)) → ACTIVE(sel(mark(y0), active(0)))
MARK(sel(0, y1)) → ACTIVE(sel(active(0), mark(y1)))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(sel(x0, x1), y1)) → ACTIVE(sel(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(indx(y0, mark(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(sel(indx(x0, x1), y1)) → ACTIVE(sel(active(indx(mark(x0), x1)), mark(y1)))
MARK(indx(0, y1)) → ACTIVE(indx(active(0), y1))
MARK(indx(y0, active(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(indx(cons(x0, x1), y1)) → ACTIVE(indx(active(cons(x0, x1)), y1))
MARK(sel(x0, y1)) → ACTIVE(sel(x0, mark(y1)))
MARK(sel(y0, from(x0))) → ACTIVE(sel(mark(y0), active(from(x0))))
MARK(sel(nil, y1)) → ACTIVE(sel(active(nil), mark(y1)))
MARK(sel(y0, nil)) → ACTIVE(sel(mark(y0), active(nil)))
MARK(from(X)) → ACTIVE(from(X))
MARK(sel(X1, X2)) → MARK(X2)
ACTIVE(dbl(s(mark(x0)))) → MARK(s(s(dbl(x0))))

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(dbls(X)) → ACTIVE(dbls(mark(X))) at position [0] we obtained the following new rules:

MARK(dbls(indx(x0, x1))) → ACTIVE(dbls(active(indx(mark(x0), x1))))
MARK(dbls(s(x0))) → ACTIVE(dbls(active(s(x0))))
MARK(dbls(from(x0))) → ACTIVE(dbls(active(from(x0))))
MARK(dbls(dbls(x0))) → ACTIVE(dbls(active(dbls(mark(x0)))))
MARK(dbls(dbl(x0))) → ACTIVE(dbls(active(dbl(mark(x0)))))
MARK(dbls(nil)) → ACTIVE(dbls(active(nil)))
MARK(dbls(sel(x0, x1))) → ACTIVE(dbls(active(sel(mark(x0), mark(x1)))))
MARK(dbls(0)) → ACTIVE(dbls(active(0)))
MARK(dbls(cons(x0, x1))) → ACTIVE(dbls(active(cons(x0, x1))))
MARK(dbls(x0)) → ACTIVE(dbls(x0))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
QDP
                                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

MARK(indx(X1, X2)) → MARK(X1)
MARK(sel(cons(x0, x1), y1)) → ACTIVE(sel(active(cons(x0, x1)), mark(y1)))
MARK(sel(from(x0), y1)) → ACTIVE(sel(active(from(x0)), mark(y1)))
MARK(indx(nil, y1)) → ACTIVE(indx(active(nil), y1))
MARK(indx(s(x0), y1)) → ACTIVE(indx(active(s(x0)), y1))
MARK(sel(s(x0), y1)) → ACTIVE(sel(active(s(x0)), mark(y1)))
MARK(indx(indx(x0, x1), y1)) → ACTIVE(indx(active(indx(mark(x0), x1)), y1))
MARK(dbl(sel(x0, x1))) → ACTIVE(dbl(active(sel(mark(x0), mark(x1)))))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(sel(y0, indx(x0, x1))) → ACTIVE(sel(mark(y0), active(indx(mark(x0), x1))))
MARK(indx(dbl(x0), y1)) → ACTIVE(indx(active(dbl(mark(x0))), y1))
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(indx(x0, x1)) → ACTIVE(indx(x0, x1))
MARK(dbl(dbl(x0))) → ACTIVE(dbl(active(dbl(mark(x0)))))
MARK(dbls(indx(x0, x1))) → ACTIVE(dbls(active(indx(mark(x0), x1))))
MARK(sel(X1, X2)) → MARK(X1)
MARK(indx(from(x0), y1)) → ACTIVE(indx(active(from(x0)), y1))
MARK(sel(dbl(x0), y1)) → ACTIVE(sel(active(dbl(mark(x0))), mark(y1)))
MARK(dbl(s(x0))) → ACTIVE(dbl(active(s(x0))))
MARK(dbl(x0)) → ACTIVE(dbl(x0))
MARK(indx(sel(x0, x1), y1)) → ACTIVE(indx(active(sel(mark(x0), mark(x1))), y1))
MARK(dbl(X)) → MARK(X)
MARK(dbl(cons(x0, x1))) → ACTIVE(dbl(active(cons(x0, x1))))
MARK(sel(y0, s(x0))) → ACTIVE(sel(mark(y0), active(s(x0))))
MARK(sel(y0, dbl(x0))) → ACTIVE(sel(mark(y0), active(dbl(mark(x0)))))
ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(dbls(sel(x0, x1))) → ACTIVE(dbls(active(sel(mark(x0), mark(x1)))))
MARK(dbl(from(x0))) → ACTIVE(dbl(active(from(x0))))
MARK(sel(y0, sel(x0, x1))) → ACTIVE(sel(mark(y0), active(sel(mark(x0), mark(x1)))))
MARK(sel(dbls(x0), y1)) → ACTIVE(sel(active(dbls(mark(x0))), mark(y1)))
MARK(dbl(indx(x0, x1))) → ACTIVE(dbl(active(indx(mark(x0), x1))))
MARK(sel(y0, cons(x0, x1))) → ACTIVE(sel(mark(y0), active(cons(x0, x1))))
MARK(dbls(from(x0))) → ACTIVE(dbls(active(from(x0))))
MARK(dbl(0)) → ACTIVE(dbl(active(0)))
MARK(dbls(dbl(x0))) → ACTIVE(dbls(active(dbl(mark(x0)))))
ACTIVE(dbl(s(active(x0)))) → MARK(s(s(dbl(x0))))
MARK(dbls(0)) → ACTIVE(dbls(active(0)))
MARK(sel(y0, dbls(x0))) → ACTIVE(sel(mark(y0), active(dbls(mark(x0)))))
MARK(dbl(dbls(x0))) → ACTIVE(dbl(active(dbls(mark(x0)))))
MARK(dbls(x0)) → ACTIVE(dbls(x0))
MARK(dbls(X)) → MARK(X)
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(indx(dbls(x0), y1)) → ACTIVE(indx(active(dbls(mark(x0))), y1))
MARK(dbls(s(x0))) → ACTIVE(dbls(active(s(x0))))
MARK(sel(y0, x1)) → ACTIVE(sel(mark(y0), x1))
MARK(dbl(nil)) → ACTIVE(dbl(active(nil)))
MARK(dbls(nil)) → ACTIVE(dbls(active(nil)))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel(0, y1)) → ACTIVE(sel(active(0), mark(y1)))
MARK(sel(y0, 0)) → ACTIVE(sel(mark(y0), active(0)))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(sel(x0, x1), y1)) → ACTIVE(sel(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(sel(indx(x0, x1), y1)) → ACTIVE(sel(active(indx(mark(x0), x1)), mark(y1)))
MARK(indx(y0, mark(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(indx(y0, active(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(indx(0, y1)) → ACTIVE(indx(active(0), y1))
MARK(sel(x0, y1)) → ACTIVE(sel(x0, mark(y1)))
MARK(indx(cons(x0, x1), y1)) → ACTIVE(indx(active(cons(x0, x1)), y1))
MARK(dbls(dbls(x0))) → ACTIVE(dbls(active(dbls(mark(x0)))))
MARK(sel(y0, from(x0))) → ACTIVE(sel(mark(y0), active(from(x0))))
MARK(from(X)) → ACTIVE(from(X))
MARK(sel(y0, nil)) → ACTIVE(sel(mark(y0), active(nil)))
MARK(sel(nil, y1)) → ACTIVE(sel(active(nil), mark(y1)))
MARK(dbls(cons(x0, x1))) → ACTIVE(dbls(active(cons(x0, x1))))
MARK(sel(X1, X2)) → MARK(X2)
ACTIVE(dbl(s(mark(x0)))) → MARK(s(s(dbl(x0))))

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(dbl(0)) → ACTIVE(dbl(active(0))) at position [0] we obtained the following new rules:

MARK(dbl(0)) → ACTIVE(dbl(0))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
QDP
                                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(indx(X1, X2)) → MARK(X1)
MARK(sel(cons(x0, x1), y1)) → ACTIVE(sel(active(cons(x0, x1)), mark(y1)))
MARK(sel(from(x0), y1)) → ACTIVE(sel(active(from(x0)), mark(y1)))
MARK(indx(nil, y1)) → ACTIVE(indx(active(nil), y1))
MARK(dbl(0)) → ACTIVE(dbl(0))
MARK(indx(s(x0), y1)) → ACTIVE(indx(active(s(x0)), y1))
MARK(indx(indx(x0, x1), y1)) → ACTIVE(indx(active(indx(mark(x0), x1)), y1))
MARK(sel(s(x0), y1)) → ACTIVE(sel(active(s(x0)), mark(y1)))
MARK(sel(y0, indx(x0, x1))) → ACTIVE(sel(mark(y0), active(indx(mark(x0), x1))))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(dbl(sel(x0, x1))) → ACTIVE(dbl(active(sel(mark(x0), mark(x1)))))
MARK(indx(dbl(x0), y1)) → ACTIVE(indx(active(dbl(mark(x0))), y1))
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(indx(x0, x1)) → ACTIVE(indx(x0, x1))
MARK(dbl(dbl(x0))) → ACTIVE(dbl(active(dbl(mark(x0)))))
MARK(dbls(indx(x0, x1))) → ACTIVE(dbls(active(indx(mark(x0), x1))))
MARK(indx(from(x0), y1)) → ACTIVE(indx(active(from(x0)), y1))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(dbl(x0), y1)) → ACTIVE(sel(active(dbl(mark(x0))), mark(y1)))
MARK(indx(sel(x0, x1), y1)) → ACTIVE(indx(active(sel(mark(x0), mark(x1))), y1))
MARK(dbl(x0)) → ACTIVE(dbl(x0))
MARK(dbl(s(x0))) → ACTIVE(dbl(active(s(x0))))
MARK(dbl(X)) → MARK(X)
MARK(dbl(cons(x0, x1))) → ACTIVE(dbl(active(cons(x0, x1))))
MARK(sel(y0, s(x0))) → ACTIVE(sel(mark(y0), active(s(x0))))
MARK(sel(y0, dbl(x0))) → ACTIVE(sel(mark(y0), active(dbl(mark(x0)))))
ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel(y0, sel(x0, x1))) → ACTIVE(sel(mark(y0), active(sel(mark(x0), mark(x1)))))
MARK(dbl(from(x0))) → ACTIVE(dbl(active(from(x0))))
MARK(dbls(sel(x0, x1))) → ACTIVE(dbls(active(sel(mark(x0), mark(x1)))))
MARK(sel(dbls(x0), y1)) → ACTIVE(sel(active(dbls(mark(x0))), mark(y1)))
MARK(dbl(indx(x0, x1))) → ACTIVE(dbl(active(indx(mark(x0), x1))))
MARK(sel(y0, cons(x0, x1))) → ACTIVE(sel(mark(y0), active(cons(x0, x1))))
MARK(dbls(from(x0))) → ACTIVE(dbls(active(from(x0))))
MARK(dbls(dbl(x0))) → ACTIVE(dbls(active(dbl(mark(x0)))))
ACTIVE(dbl(s(active(x0)))) → MARK(s(s(dbl(x0))))
MARK(sel(y0, dbls(x0))) → ACTIVE(sel(mark(y0), active(dbls(mark(x0)))))
MARK(dbls(0)) → ACTIVE(dbls(active(0)))
MARK(dbl(dbls(x0))) → ACTIVE(dbl(active(dbls(mark(x0)))))
MARK(dbls(x0)) → ACTIVE(dbls(x0))
MARK(dbls(X)) → MARK(X)
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
MARK(indx(dbls(x0), y1)) → ACTIVE(indx(active(dbls(mark(x0))), y1))
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(y0, x1)) → ACTIVE(sel(mark(y0), x1))
MARK(dbls(s(x0))) → ACTIVE(dbls(active(s(x0))))
MARK(dbl(nil)) → ACTIVE(dbl(active(nil)))
MARK(dbls(nil)) → ACTIVE(dbls(active(nil)))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel(y0, 0)) → ACTIVE(sel(mark(y0), active(0)))
MARK(sel(0, y1)) → ACTIVE(sel(active(0), mark(y1)))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(sel(x0, x1), y1)) → ACTIVE(sel(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(indx(y0, mark(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(sel(indx(x0, x1), y1)) → ACTIVE(sel(active(indx(mark(x0), x1)), mark(y1)))
MARK(indx(0, y1)) → ACTIVE(indx(active(0), y1))
MARK(indx(y0, active(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(indx(cons(x0, x1), y1)) → ACTIVE(indx(active(cons(x0, x1)), y1))
MARK(sel(x0, y1)) → ACTIVE(sel(x0, mark(y1)))
MARK(dbls(dbls(x0))) → ACTIVE(dbls(active(dbls(mark(x0)))))
MARK(sel(y0, from(x0))) → ACTIVE(sel(mark(y0), active(from(x0))))
MARK(sel(nil, y1)) → ACTIVE(sel(active(nil), mark(y1)))
MARK(sel(y0, nil)) → ACTIVE(sel(mark(y0), active(nil)))
MARK(from(X)) → ACTIVE(from(X))
MARK(dbls(cons(x0, x1))) → ACTIVE(dbls(active(cons(x0, x1))))
MARK(sel(X1, X2)) → MARK(X2)
ACTIVE(dbl(s(mark(x0)))) → MARK(s(s(dbl(x0))))

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
QDP
                                                ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

MARK(indx(X1, X2)) → MARK(X1)
MARK(sel(cons(x0, x1), y1)) → ACTIVE(sel(active(cons(x0, x1)), mark(y1)))
MARK(sel(from(x0), y1)) → ACTIVE(sel(active(from(x0)), mark(y1)))
MARK(indx(nil, y1)) → ACTIVE(indx(active(nil), y1))
MARK(indx(s(x0), y1)) → ACTIVE(indx(active(s(x0)), y1))
MARK(sel(s(x0), y1)) → ACTIVE(sel(active(s(x0)), mark(y1)))
MARK(indx(indx(x0, x1), y1)) → ACTIVE(indx(active(indx(mark(x0), x1)), y1))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(sel(y0, indx(x0, x1))) → ACTIVE(sel(mark(y0), active(indx(mark(x0), x1))))
MARK(dbl(sel(x0, x1))) → ACTIVE(dbl(active(sel(mark(x0), mark(x1)))))
MARK(indx(dbl(x0), y1)) → ACTIVE(indx(active(dbl(mark(x0))), y1))
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(indx(x0, x1)) → ACTIVE(indx(x0, x1))
MARK(dbl(dbl(x0))) → ACTIVE(dbl(active(dbl(mark(x0)))))
MARK(dbls(indx(x0, x1))) → ACTIVE(dbls(active(indx(mark(x0), x1))))
MARK(sel(X1, X2)) → MARK(X1)
MARK(indx(from(x0), y1)) → ACTIVE(indx(active(from(x0)), y1))
MARK(sel(dbl(x0), y1)) → ACTIVE(sel(active(dbl(mark(x0))), mark(y1)))
MARK(indx(sel(x0, x1), y1)) → ACTIVE(indx(active(sel(mark(x0), mark(x1))), y1))
MARK(dbl(x0)) → ACTIVE(dbl(x0))
MARK(dbl(s(x0))) → ACTIVE(dbl(active(s(x0))))
MARK(dbl(X)) → MARK(X)
MARK(dbl(cons(x0, x1))) → ACTIVE(dbl(active(cons(x0, x1))))
MARK(sel(y0, s(x0))) → ACTIVE(sel(mark(y0), active(s(x0))))
MARK(sel(y0, dbl(x0))) → ACTIVE(sel(mark(y0), active(dbl(mark(x0)))))
ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(dbls(sel(x0, x1))) → ACTIVE(dbls(active(sel(mark(x0), mark(x1)))))
MARK(sel(y0, sel(x0, x1))) → ACTIVE(sel(mark(y0), active(sel(mark(x0), mark(x1)))))
MARK(dbl(from(x0))) → ACTIVE(dbl(active(from(x0))))
MARK(sel(dbls(x0), y1)) → ACTIVE(sel(active(dbls(mark(x0))), mark(y1)))
MARK(dbl(indx(x0, x1))) → ACTIVE(dbl(active(indx(mark(x0), x1))))
MARK(sel(y0, cons(x0, x1))) → ACTIVE(sel(mark(y0), active(cons(x0, x1))))
MARK(dbls(from(x0))) → ACTIVE(dbls(active(from(x0))))
MARK(dbls(dbl(x0))) → ACTIVE(dbls(active(dbl(mark(x0)))))
ACTIVE(dbl(s(active(x0)))) → MARK(s(s(dbl(x0))))
MARK(dbls(0)) → ACTIVE(dbls(active(0)))
MARK(sel(y0, dbls(x0))) → ACTIVE(sel(mark(y0), active(dbls(mark(x0)))))
MARK(dbl(dbls(x0))) → ACTIVE(dbl(active(dbls(mark(x0)))))
MARK(dbls(x0)) → ACTIVE(dbls(x0))
MARK(dbls(X)) → MARK(X)
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
MARK(indx(dbls(x0), y1)) → ACTIVE(indx(active(dbls(mark(x0))), y1))
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(dbls(s(x0))) → ACTIVE(dbls(active(s(x0))))
MARK(sel(y0, x1)) → ACTIVE(sel(mark(y0), x1))
MARK(dbl(nil)) → ACTIVE(dbl(active(nil)))
MARK(dbls(nil)) → ACTIVE(dbls(active(nil)))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel(0, y1)) → ACTIVE(sel(active(0), mark(y1)))
MARK(sel(y0, 0)) → ACTIVE(sel(mark(y0), active(0)))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(sel(x0, x1), y1)) → ACTIVE(sel(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(indx(y0, mark(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(sel(indx(x0, x1), y1)) → ACTIVE(sel(active(indx(mark(x0), x1)), mark(y1)))
MARK(indx(0, y1)) → ACTIVE(indx(active(0), y1))
MARK(indx(y0, active(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(sel(x0, y1)) → ACTIVE(sel(x0, mark(y1)))
MARK(indx(cons(x0, x1), y1)) → ACTIVE(indx(active(cons(x0, x1)), y1))
MARK(dbls(dbls(x0))) → ACTIVE(dbls(active(dbls(mark(x0)))))
MARK(sel(y0, from(x0))) → ACTIVE(sel(mark(y0), active(from(x0))))
MARK(from(X)) → ACTIVE(from(X))
MARK(sel(y0, nil)) → ACTIVE(sel(mark(y0), active(nil)))
MARK(sel(nil, y1)) → ACTIVE(sel(active(nil), mark(y1)))
MARK(dbls(cons(x0, x1))) → ACTIVE(dbls(active(cons(x0, x1))))
MARK(sel(X1, X2)) → MARK(X2)
ACTIVE(dbl(s(mark(x0)))) → MARK(s(s(dbl(x0))))

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(dbl(nil)) → ACTIVE(dbl(active(nil))) at position [0] we obtained the following new rules:

MARK(dbl(nil)) → ACTIVE(dbl(nil))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Narrowing
QDP
                                                    ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(indx(X1, X2)) → MARK(X1)
MARK(sel(cons(x0, x1), y1)) → ACTIVE(sel(active(cons(x0, x1)), mark(y1)))
MARK(sel(from(x0), y1)) → ACTIVE(sel(active(from(x0)), mark(y1)))
MARK(indx(nil, y1)) → ACTIVE(indx(active(nil), y1))
MARK(indx(s(x0), y1)) → ACTIVE(indx(active(s(x0)), y1))
MARK(indx(indx(x0, x1), y1)) → ACTIVE(indx(active(indx(mark(x0), x1)), y1))
MARK(sel(s(x0), y1)) → ACTIVE(sel(active(s(x0)), mark(y1)))
MARK(dbl(sel(x0, x1))) → ACTIVE(dbl(active(sel(mark(x0), mark(x1)))))
MARK(sel(y0, indx(x0, x1))) → ACTIVE(sel(mark(y0), active(indx(mark(x0), x1))))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(indx(dbl(x0), y1)) → ACTIVE(indx(active(dbl(mark(x0))), y1))
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(indx(x0, x1)) → ACTIVE(indx(x0, x1))
MARK(dbl(dbl(x0))) → ACTIVE(dbl(active(dbl(mark(x0)))))
MARK(dbls(indx(x0, x1))) → ACTIVE(dbls(active(indx(mark(x0), x1))))
MARK(indx(from(x0), y1)) → ACTIVE(indx(active(from(x0)), y1))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(dbl(x0), y1)) → ACTIVE(sel(active(dbl(mark(x0))), mark(y1)))
MARK(dbl(s(x0))) → ACTIVE(dbl(active(s(x0))))
MARK(dbl(x0)) → ACTIVE(dbl(x0))
MARK(indx(sel(x0, x1), y1)) → ACTIVE(indx(active(sel(mark(x0), mark(x1))), y1))
MARK(dbl(X)) → MARK(X)
MARK(dbl(cons(x0, x1))) → ACTIVE(dbl(active(cons(x0, x1))))
MARK(sel(y0, s(x0))) → ACTIVE(sel(mark(y0), active(s(x0))))
MARK(sel(y0, dbl(x0))) → ACTIVE(sel(mark(y0), active(dbl(mark(x0)))))
ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(dbl(from(x0))) → ACTIVE(dbl(active(from(x0))))
MARK(sel(y0, sel(x0, x1))) → ACTIVE(sel(mark(y0), active(sel(mark(x0), mark(x1)))))
MARK(dbls(sel(x0, x1))) → ACTIVE(dbls(active(sel(mark(x0), mark(x1)))))
MARK(sel(dbls(x0), y1)) → ACTIVE(sel(active(dbls(mark(x0))), mark(y1)))
MARK(dbl(indx(x0, x1))) → ACTIVE(dbl(active(indx(mark(x0), x1))))
MARK(sel(y0, cons(x0, x1))) → ACTIVE(sel(mark(y0), active(cons(x0, x1))))
MARK(dbls(from(x0))) → ACTIVE(dbls(active(from(x0))))
MARK(dbls(dbl(x0))) → ACTIVE(dbls(active(dbl(mark(x0)))))
ACTIVE(dbl(s(active(x0)))) → MARK(s(s(dbl(x0))))
MARK(sel(y0, dbls(x0))) → ACTIVE(sel(mark(y0), active(dbls(mark(x0)))))
MARK(dbls(0)) → ACTIVE(dbls(active(0)))
MARK(dbl(dbls(x0))) → ACTIVE(dbl(active(dbls(mark(x0)))))
MARK(dbls(x0)) → ACTIVE(dbls(x0))
MARK(dbls(X)) → MARK(X)
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(indx(dbls(x0), y1)) → ACTIVE(indx(active(dbls(mark(x0))), y1))
MARK(sel(y0, x1)) → ACTIVE(sel(mark(y0), x1))
MARK(dbls(s(x0))) → ACTIVE(dbls(active(s(x0))))
MARK(dbls(nil)) → ACTIVE(dbls(active(nil)))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel(y0, 0)) → ACTIVE(sel(mark(y0), active(0)))
MARK(sel(0, y1)) → ACTIVE(sel(active(0), mark(y1)))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(sel(x0, x1), y1)) → ACTIVE(sel(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(sel(indx(x0, x1), y1)) → ACTIVE(sel(active(indx(mark(x0), x1)), mark(y1)))
MARK(indx(y0, mark(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(indx(y0, active(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(indx(0, y1)) → ACTIVE(indx(active(0), y1))
MARK(indx(cons(x0, x1), y1)) → ACTIVE(indx(active(cons(x0, x1)), y1))
MARK(sel(x0, y1)) → ACTIVE(sel(x0, mark(y1)))
MARK(dbls(dbls(x0))) → ACTIVE(dbls(active(dbls(mark(x0)))))
MARK(sel(y0, from(x0))) → ACTIVE(sel(mark(y0), active(from(x0))))
MARK(sel(nil, y1)) → ACTIVE(sel(active(nil), mark(y1)))
MARK(sel(y0, nil)) → ACTIVE(sel(mark(y0), active(nil)))
MARK(from(X)) → ACTIVE(from(X))
MARK(dbls(cons(x0, x1))) → ACTIVE(dbls(active(cons(x0, x1))))
MARK(dbl(nil)) → ACTIVE(dbl(nil))
MARK(sel(X1, X2)) → MARK(X2)
ACTIVE(dbl(s(mark(x0)))) → MARK(s(s(dbl(x0))))

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
QDP
                                                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

MARK(indx(X1, X2)) → MARK(X1)
MARK(sel(cons(x0, x1), y1)) → ACTIVE(sel(active(cons(x0, x1)), mark(y1)))
MARK(sel(from(x0), y1)) → ACTIVE(sel(active(from(x0)), mark(y1)))
MARK(indx(nil, y1)) → ACTIVE(indx(active(nil), y1))
MARK(indx(s(x0), y1)) → ACTIVE(indx(active(s(x0)), y1))
MARK(sel(s(x0), y1)) → ACTIVE(sel(active(s(x0)), mark(y1)))
MARK(indx(indx(x0, x1), y1)) → ACTIVE(indx(active(indx(mark(x0), x1)), y1))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(sel(y0, indx(x0, x1))) → ACTIVE(sel(mark(y0), active(indx(mark(x0), x1))))
MARK(dbl(sel(x0, x1))) → ACTIVE(dbl(active(sel(mark(x0), mark(x1)))))
MARK(indx(dbl(x0), y1)) → ACTIVE(indx(active(dbl(mark(x0))), y1))
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(indx(x0, x1)) → ACTIVE(indx(x0, x1))
MARK(dbl(dbl(x0))) → ACTIVE(dbl(active(dbl(mark(x0)))))
MARK(dbls(indx(x0, x1))) → ACTIVE(dbls(active(indx(mark(x0), x1))))
MARK(sel(X1, X2)) → MARK(X1)
MARK(indx(from(x0), y1)) → ACTIVE(indx(active(from(x0)), y1))
MARK(sel(dbl(x0), y1)) → ACTIVE(sel(active(dbl(mark(x0))), mark(y1)))
MARK(dbl(x0)) → ACTIVE(dbl(x0))
MARK(dbl(s(x0))) → ACTIVE(dbl(active(s(x0))))
MARK(indx(sel(x0, x1), y1)) → ACTIVE(indx(active(sel(mark(x0), mark(x1))), y1))
MARK(dbl(X)) → MARK(X)
MARK(dbl(cons(x0, x1))) → ACTIVE(dbl(active(cons(x0, x1))))
MARK(sel(y0, s(x0))) → ACTIVE(sel(mark(y0), active(s(x0))))
MARK(sel(y0, dbl(x0))) → ACTIVE(sel(mark(y0), active(dbl(mark(x0)))))
ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(dbls(sel(x0, x1))) → ACTIVE(dbls(active(sel(mark(x0), mark(x1)))))
MARK(sel(y0, sel(x0, x1))) → ACTIVE(sel(mark(y0), active(sel(mark(x0), mark(x1)))))
MARK(dbl(from(x0))) → ACTIVE(dbl(active(from(x0))))
MARK(sel(dbls(x0), y1)) → ACTIVE(sel(active(dbls(mark(x0))), mark(y1)))
MARK(dbl(indx(x0, x1))) → ACTIVE(dbl(active(indx(mark(x0), x1))))
MARK(sel(y0, cons(x0, x1))) → ACTIVE(sel(mark(y0), active(cons(x0, x1))))
MARK(dbls(from(x0))) → ACTIVE(dbls(active(from(x0))))
MARK(dbls(dbl(x0))) → ACTIVE(dbls(active(dbl(mark(x0)))))
ACTIVE(dbl(s(active(x0)))) → MARK(s(s(dbl(x0))))
MARK(dbls(0)) → ACTIVE(dbls(active(0)))
MARK(sel(y0, dbls(x0))) → ACTIVE(sel(mark(y0), active(dbls(mark(x0)))))
MARK(dbl(dbls(x0))) → ACTIVE(dbl(active(dbls(mark(x0)))))
MARK(dbls(x0)) → ACTIVE(dbls(x0))
MARK(dbls(X)) → MARK(X)
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
MARK(indx(dbls(x0), y1)) → ACTIVE(indx(active(dbls(mark(x0))), y1))
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(dbls(s(x0))) → ACTIVE(dbls(active(s(x0))))
MARK(sel(y0, x1)) → ACTIVE(sel(mark(y0), x1))
MARK(dbls(nil)) → ACTIVE(dbls(active(nil)))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel(0, y1)) → ACTIVE(sel(active(0), mark(y1)))
MARK(sel(y0, 0)) → ACTIVE(sel(mark(y0), active(0)))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(sel(x0, x1), y1)) → ACTIVE(sel(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(indx(y0, mark(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(sel(indx(x0, x1), y1)) → ACTIVE(sel(active(indx(mark(x0), x1)), mark(y1)))
MARK(indx(0, y1)) → ACTIVE(indx(active(0), y1))
MARK(indx(y0, active(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(sel(x0, y1)) → ACTIVE(sel(x0, mark(y1)))
MARK(indx(cons(x0, x1), y1)) → ACTIVE(indx(active(cons(x0, x1)), y1))
MARK(dbls(dbls(x0))) → ACTIVE(dbls(active(dbls(mark(x0)))))
MARK(sel(y0, from(x0))) → ACTIVE(sel(mark(y0), active(from(x0))))
MARK(from(X)) → ACTIVE(from(X))
MARK(sel(y0, nil)) → ACTIVE(sel(mark(y0), active(nil)))
MARK(sel(nil, y1)) → ACTIVE(sel(active(nil), mark(y1)))
MARK(dbls(cons(x0, x1))) → ACTIVE(dbls(active(cons(x0, x1))))
MARK(sel(X1, X2)) → MARK(X2)
ACTIVE(dbl(s(mark(x0)))) → MARK(s(s(dbl(x0))))

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(dbls(nil)) → ACTIVE(dbls(active(nil))) at position [0] we obtained the following new rules:

MARK(dbls(nil)) → ACTIVE(dbls(nil))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Narrowing
QDP
                                                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(indx(X1, X2)) → MARK(X1)
MARK(sel(cons(x0, x1), y1)) → ACTIVE(sel(active(cons(x0, x1)), mark(y1)))
MARK(sel(from(x0), y1)) → ACTIVE(sel(active(from(x0)), mark(y1)))
MARK(indx(nil, y1)) → ACTIVE(indx(active(nil), y1))
MARK(indx(s(x0), y1)) → ACTIVE(indx(active(s(x0)), y1))
MARK(indx(indx(x0, x1), y1)) → ACTIVE(indx(active(indx(mark(x0), x1)), y1))
MARK(sel(s(x0), y1)) → ACTIVE(sel(active(s(x0)), mark(y1)))
MARK(dbl(sel(x0, x1))) → ACTIVE(dbl(active(sel(mark(x0), mark(x1)))))
MARK(sel(y0, indx(x0, x1))) → ACTIVE(sel(mark(y0), active(indx(mark(x0), x1))))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(indx(dbl(x0), y1)) → ACTIVE(indx(active(dbl(mark(x0))), y1))
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(indx(x0, x1)) → ACTIVE(indx(x0, x1))
MARK(dbl(dbl(x0))) → ACTIVE(dbl(active(dbl(mark(x0)))))
MARK(dbls(indx(x0, x1))) → ACTIVE(dbls(active(indx(mark(x0), x1))))
MARK(indx(from(x0), y1)) → ACTIVE(indx(active(from(x0)), y1))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(dbl(x0), y1)) → ACTIVE(sel(active(dbl(mark(x0))), mark(y1)))
MARK(indx(sel(x0, x1), y1)) → ACTIVE(indx(active(sel(mark(x0), mark(x1))), y1))
MARK(dbl(s(x0))) → ACTIVE(dbl(active(s(x0))))
MARK(dbl(x0)) → ACTIVE(dbl(x0))
MARK(dbl(X)) → MARK(X)
MARK(dbl(cons(x0, x1))) → ACTIVE(dbl(active(cons(x0, x1))))
MARK(sel(y0, s(x0))) → ACTIVE(sel(mark(y0), active(s(x0))))
MARK(sel(y0, dbl(x0))) → ACTIVE(sel(mark(y0), active(dbl(mark(x0)))))
ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(dbl(from(x0))) → ACTIVE(dbl(active(from(x0))))
MARK(sel(y0, sel(x0, x1))) → ACTIVE(sel(mark(y0), active(sel(mark(x0), mark(x1)))))
MARK(dbls(sel(x0, x1))) → ACTIVE(dbls(active(sel(mark(x0), mark(x1)))))
MARK(sel(dbls(x0), y1)) → ACTIVE(sel(active(dbls(mark(x0))), mark(y1)))
MARK(dbl(indx(x0, x1))) → ACTIVE(dbl(active(indx(mark(x0), x1))))
MARK(sel(y0, cons(x0, x1))) → ACTIVE(sel(mark(y0), active(cons(x0, x1))))
MARK(dbls(from(x0))) → ACTIVE(dbls(active(from(x0))))
MARK(dbls(dbl(x0))) → ACTIVE(dbls(active(dbl(mark(x0)))))
ACTIVE(dbl(s(active(x0)))) → MARK(s(s(dbl(x0))))
MARK(sel(y0, dbls(x0))) → ACTIVE(sel(mark(y0), active(dbls(mark(x0)))))
MARK(dbls(0)) → ACTIVE(dbls(active(0)))
MARK(dbl(dbls(x0))) → ACTIVE(dbl(active(dbls(mark(x0)))))
MARK(dbls(x0)) → ACTIVE(dbls(x0))
MARK(dbls(X)) → MARK(X)
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(indx(dbls(x0), y1)) → ACTIVE(indx(active(dbls(mark(x0))), y1))
MARK(sel(y0, x1)) → ACTIVE(sel(mark(y0), x1))
MARK(dbls(s(x0))) → ACTIVE(dbls(active(s(x0))))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel(y0, 0)) → ACTIVE(sel(mark(y0), active(0)))
MARK(sel(0, y1)) → ACTIVE(sel(active(0), mark(y1)))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(sel(x0, x1), y1)) → ACTIVE(sel(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(sel(indx(x0, x1), y1)) → ACTIVE(sel(active(indx(mark(x0), x1)), mark(y1)))
MARK(indx(y0, mark(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(indx(y0, active(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(indx(0, y1)) → ACTIVE(indx(active(0), y1))
MARK(dbls(nil)) → ACTIVE(dbls(nil))
MARK(indx(cons(x0, x1), y1)) → ACTIVE(indx(active(cons(x0, x1)), y1))
MARK(sel(x0, y1)) → ACTIVE(sel(x0, mark(y1)))
MARK(dbls(dbls(x0))) → ACTIVE(dbls(active(dbls(mark(x0)))))
MARK(sel(y0, from(x0))) → ACTIVE(sel(mark(y0), active(from(x0))))
MARK(sel(nil, y1)) → ACTIVE(sel(active(nil), mark(y1)))
MARK(sel(y0, nil)) → ACTIVE(sel(mark(y0), active(nil)))
MARK(from(X)) → ACTIVE(from(X))
MARK(dbls(cons(x0, x1))) → ACTIVE(dbls(active(cons(x0, x1))))
MARK(sel(X1, X2)) → MARK(X2)
ACTIVE(dbl(s(mark(x0)))) → MARK(s(s(dbl(x0))))

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Narrowing
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
QDP
                                                                ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

MARK(indx(X1, X2)) → MARK(X1)
MARK(sel(cons(x0, x1), y1)) → ACTIVE(sel(active(cons(x0, x1)), mark(y1)))
MARK(sel(from(x0), y1)) → ACTIVE(sel(active(from(x0)), mark(y1)))
MARK(indx(nil, y1)) → ACTIVE(indx(active(nil), y1))
MARK(indx(s(x0), y1)) → ACTIVE(indx(active(s(x0)), y1))
MARK(sel(s(x0), y1)) → ACTIVE(sel(active(s(x0)), mark(y1)))
MARK(indx(indx(x0, x1), y1)) → ACTIVE(indx(active(indx(mark(x0), x1)), y1))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(sel(y0, indx(x0, x1))) → ACTIVE(sel(mark(y0), active(indx(mark(x0), x1))))
MARK(dbl(sel(x0, x1))) → ACTIVE(dbl(active(sel(mark(x0), mark(x1)))))
MARK(indx(dbl(x0), y1)) → ACTIVE(indx(active(dbl(mark(x0))), y1))
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(indx(x0, x1)) → ACTIVE(indx(x0, x1))
MARK(dbl(dbl(x0))) → ACTIVE(dbl(active(dbl(mark(x0)))))
MARK(dbls(indx(x0, x1))) → ACTIVE(dbls(active(indx(mark(x0), x1))))
MARK(sel(X1, X2)) → MARK(X1)
MARK(indx(from(x0), y1)) → ACTIVE(indx(active(from(x0)), y1))
MARK(sel(dbl(x0), y1)) → ACTIVE(sel(active(dbl(mark(x0))), mark(y1)))
MARK(dbl(x0)) → ACTIVE(dbl(x0))
MARK(dbl(s(x0))) → ACTIVE(dbl(active(s(x0))))
MARK(indx(sel(x0, x1), y1)) → ACTIVE(indx(active(sel(mark(x0), mark(x1))), y1))
MARK(dbl(X)) → MARK(X)
MARK(dbl(cons(x0, x1))) → ACTIVE(dbl(active(cons(x0, x1))))
MARK(sel(y0, s(x0))) → ACTIVE(sel(mark(y0), active(s(x0))))
MARK(sel(y0, dbl(x0))) → ACTIVE(sel(mark(y0), active(dbl(mark(x0)))))
ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(dbls(sel(x0, x1))) → ACTIVE(dbls(active(sel(mark(x0), mark(x1)))))
MARK(sel(y0, sel(x0, x1))) → ACTIVE(sel(mark(y0), active(sel(mark(x0), mark(x1)))))
MARK(dbl(from(x0))) → ACTIVE(dbl(active(from(x0))))
MARK(sel(dbls(x0), y1)) → ACTIVE(sel(active(dbls(mark(x0))), mark(y1)))
MARK(dbl(indx(x0, x1))) → ACTIVE(dbl(active(indx(mark(x0), x1))))
MARK(sel(y0, cons(x0, x1))) → ACTIVE(sel(mark(y0), active(cons(x0, x1))))
MARK(dbls(from(x0))) → ACTIVE(dbls(active(from(x0))))
MARK(dbls(dbl(x0))) → ACTIVE(dbls(active(dbl(mark(x0)))))
ACTIVE(dbl(s(active(x0)))) → MARK(s(s(dbl(x0))))
MARK(dbls(0)) → ACTIVE(dbls(active(0)))
MARK(sel(y0, dbls(x0))) → ACTIVE(sel(mark(y0), active(dbls(mark(x0)))))
MARK(dbl(dbls(x0))) → ACTIVE(dbl(active(dbls(mark(x0)))))
MARK(dbls(x0)) → ACTIVE(dbls(x0))
MARK(dbls(X)) → MARK(X)
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
MARK(indx(dbls(x0), y1)) → ACTIVE(indx(active(dbls(mark(x0))), y1))
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(dbls(s(x0))) → ACTIVE(dbls(active(s(x0))))
MARK(sel(y0, x1)) → ACTIVE(sel(mark(y0), x1))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel(0, y1)) → ACTIVE(sel(active(0), mark(y1)))
MARK(sel(y0, 0)) → ACTIVE(sel(mark(y0), active(0)))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(sel(x0, x1), y1)) → ACTIVE(sel(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(indx(y0, mark(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(sel(indx(x0, x1), y1)) → ACTIVE(sel(active(indx(mark(x0), x1)), mark(y1)))
MARK(indx(0, y1)) → ACTIVE(indx(active(0), y1))
MARK(indx(y0, active(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(sel(x0, y1)) → ACTIVE(sel(x0, mark(y1)))
MARK(indx(cons(x0, x1), y1)) → ACTIVE(indx(active(cons(x0, x1)), y1))
MARK(dbls(dbls(x0))) → ACTIVE(dbls(active(dbls(mark(x0)))))
MARK(sel(y0, from(x0))) → ACTIVE(sel(mark(y0), active(from(x0))))
MARK(from(X)) → ACTIVE(from(X))
MARK(sel(y0, nil)) → ACTIVE(sel(mark(y0), active(nil)))
MARK(sel(nil, y1)) → ACTIVE(sel(active(nil), mark(y1)))
MARK(dbls(cons(x0, x1))) → ACTIVE(dbls(active(cons(x0, x1))))
MARK(sel(X1, X2)) → MARK(X2)
ACTIVE(dbl(s(mark(x0)))) → MARK(s(s(dbl(x0))))

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(dbls(0)) → ACTIVE(dbls(active(0))) at position [0] we obtained the following new rules:

MARK(dbls(0)) → ACTIVE(dbls(0))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Narrowing
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ Narrowing
QDP
                                                                    ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(indx(X1, X2)) → MARK(X1)
MARK(sel(cons(x0, x1), y1)) → ACTIVE(sel(active(cons(x0, x1)), mark(y1)))
MARK(sel(from(x0), y1)) → ACTIVE(sel(active(from(x0)), mark(y1)))
MARK(indx(nil, y1)) → ACTIVE(indx(active(nil), y1))
MARK(indx(s(x0), y1)) → ACTIVE(indx(active(s(x0)), y1))
MARK(indx(indx(x0, x1), y1)) → ACTIVE(indx(active(indx(mark(x0), x1)), y1))
MARK(sel(s(x0), y1)) → ACTIVE(sel(active(s(x0)), mark(y1)))
MARK(dbl(sel(x0, x1))) → ACTIVE(dbl(active(sel(mark(x0), mark(x1)))))
MARK(sel(y0, indx(x0, x1))) → ACTIVE(sel(mark(y0), active(indx(mark(x0), x1))))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(indx(dbl(x0), y1)) → ACTIVE(indx(active(dbl(mark(x0))), y1))
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(indx(x0, x1)) → ACTIVE(indx(x0, x1))
MARK(dbl(dbl(x0))) → ACTIVE(dbl(active(dbl(mark(x0)))))
MARK(dbls(indx(x0, x1))) → ACTIVE(dbls(active(indx(mark(x0), x1))))
MARK(indx(from(x0), y1)) → ACTIVE(indx(active(from(x0)), y1))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(dbl(x0), y1)) → ACTIVE(sel(active(dbl(mark(x0))), mark(y1)))
MARK(indx(sel(x0, x1), y1)) → ACTIVE(indx(active(sel(mark(x0), mark(x1))), y1))
MARK(dbl(s(x0))) → ACTIVE(dbl(active(s(x0))))
MARK(dbl(x0)) → ACTIVE(dbl(x0))
MARK(dbl(X)) → MARK(X)
MARK(dbl(cons(x0, x1))) → ACTIVE(dbl(active(cons(x0, x1))))
MARK(sel(y0, s(x0))) → ACTIVE(sel(mark(y0), active(s(x0))))
MARK(sel(y0, dbl(x0))) → ACTIVE(sel(mark(y0), active(dbl(mark(x0)))))
ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(dbl(from(x0))) → ACTIVE(dbl(active(from(x0))))
MARK(sel(y0, sel(x0, x1))) → ACTIVE(sel(mark(y0), active(sel(mark(x0), mark(x1)))))
MARK(dbls(sel(x0, x1))) → ACTIVE(dbls(active(sel(mark(x0), mark(x1)))))
MARK(sel(dbls(x0), y1)) → ACTIVE(sel(active(dbls(mark(x0))), mark(y1)))
MARK(dbl(indx(x0, x1))) → ACTIVE(dbl(active(indx(mark(x0), x1))))
MARK(sel(y0, cons(x0, x1))) → ACTIVE(sel(mark(y0), active(cons(x0, x1))))
MARK(dbls(from(x0))) → ACTIVE(dbls(active(from(x0))))
MARK(dbls(dbl(x0))) → ACTIVE(dbls(active(dbl(mark(x0)))))
ACTIVE(dbl(s(active(x0)))) → MARK(s(s(dbl(x0))))
MARK(sel(y0, dbls(x0))) → ACTIVE(sel(mark(y0), active(dbls(mark(x0)))))
MARK(dbl(dbls(x0))) → ACTIVE(dbl(active(dbls(mark(x0)))))
MARK(dbls(x0)) → ACTIVE(dbls(x0))
MARK(dbls(X)) → MARK(X)
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(indx(dbls(x0), y1)) → ACTIVE(indx(active(dbls(mark(x0))), y1))
MARK(sel(y0, x1)) → ACTIVE(sel(mark(y0), x1))
MARK(dbls(s(x0))) → ACTIVE(dbls(active(s(x0))))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel(y0, 0)) → ACTIVE(sel(mark(y0), active(0)))
MARK(sel(0, y1)) → ACTIVE(sel(active(0), mark(y1)))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(sel(x0, x1), y1)) → ACTIVE(sel(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(dbls(0)) → ACTIVE(dbls(0))
MARK(sel(indx(x0, x1), y1)) → ACTIVE(sel(active(indx(mark(x0), x1)), mark(y1)))
MARK(indx(y0, mark(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(indx(y0, active(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(indx(0, y1)) → ACTIVE(indx(active(0), y1))
MARK(indx(cons(x0, x1), y1)) → ACTIVE(indx(active(cons(x0, x1)), y1))
MARK(sel(x0, y1)) → ACTIVE(sel(x0, mark(y1)))
MARK(dbls(dbls(x0))) → ACTIVE(dbls(active(dbls(mark(x0)))))
MARK(sel(y0, from(x0))) → ACTIVE(sel(mark(y0), active(from(x0))))
MARK(sel(nil, y1)) → ACTIVE(sel(active(nil), mark(y1)))
MARK(sel(y0, nil)) → ACTIVE(sel(mark(y0), active(nil)))
MARK(from(X)) → ACTIVE(from(X))
MARK(dbls(cons(x0, x1))) → ACTIVE(dbls(active(cons(x0, x1))))
MARK(sel(X1, X2)) → MARK(X2)
ACTIVE(dbl(s(mark(x0)))) → MARK(s(s(dbl(x0))))

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Narrowing
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
QDP
                                                                        ↳ SemLabProof
                                                                        ↳ SemLabProof2

Q DP problem:
The TRS P consists of the following rules:

MARK(indx(X1, X2)) → MARK(X1)
MARK(sel(cons(x0, x1), y1)) → ACTIVE(sel(active(cons(x0, x1)), mark(y1)))
MARK(sel(from(x0), y1)) → ACTIVE(sel(active(from(x0)), mark(y1)))
MARK(indx(nil, y1)) → ACTIVE(indx(active(nil), y1))
MARK(indx(s(x0), y1)) → ACTIVE(indx(active(s(x0)), y1))
MARK(sel(s(x0), y1)) → ACTIVE(sel(active(s(x0)), mark(y1)))
MARK(indx(indx(x0, x1), y1)) → ACTIVE(indx(active(indx(mark(x0), x1)), y1))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(sel(y0, indx(x0, x1))) → ACTIVE(sel(mark(y0), active(indx(mark(x0), x1))))
MARK(dbl(sel(x0, x1))) → ACTIVE(dbl(active(sel(mark(x0), mark(x1)))))
MARK(indx(dbl(x0), y1)) → ACTIVE(indx(active(dbl(mark(x0))), y1))
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(indx(x0, x1)) → ACTIVE(indx(x0, x1))
MARK(dbl(dbl(x0))) → ACTIVE(dbl(active(dbl(mark(x0)))))
MARK(dbls(indx(x0, x1))) → ACTIVE(dbls(active(indx(mark(x0), x1))))
MARK(sel(X1, X2)) → MARK(X1)
MARK(indx(from(x0), y1)) → ACTIVE(indx(active(from(x0)), y1))
MARK(sel(dbl(x0), y1)) → ACTIVE(sel(active(dbl(mark(x0))), mark(y1)))
MARK(dbl(x0)) → ACTIVE(dbl(x0))
MARK(dbl(s(x0))) → ACTIVE(dbl(active(s(x0))))
MARK(indx(sel(x0, x1), y1)) → ACTIVE(indx(active(sel(mark(x0), mark(x1))), y1))
MARK(dbl(X)) → MARK(X)
MARK(dbl(cons(x0, x1))) → ACTIVE(dbl(active(cons(x0, x1))))
MARK(sel(y0, s(x0))) → ACTIVE(sel(mark(y0), active(s(x0))))
MARK(sel(y0, dbl(x0))) → ACTIVE(sel(mark(y0), active(dbl(mark(x0)))))
ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(dbls(sel(x0, x1))) → ACTIVE(dbls(active(sel(mark(x0), mark(x1)))))
MARK(sel(y0, sel(x0, x1))) → ACTIVE(sel(mark(y0), active(sel(mark(x0), mark(x1)))))
MARK(dbl(from(x0))) → ACTIVE(dbl(active(from(x0))))
MARK(sel(dbls(x0), y1)) → ACTIVE(sel(active(dbls(mark(x0))), mark(y1)))
MARK(dbl(indx(x0, x1))) → ACTIVE(dbl(active(indx(mark(x0), x1))))
MARK(sel(y0, cons(x0, x1))) → ACTIVE(sel(mark(y0), active(cons(x0, x1))))
MARK(dbls(from(x0))) → ACTIVE(dbls(active(from(x0))))
MARK(dbls(dbl(x0))) → ACTIVE(dbls(active(dbl(mark(x0)))))
ACTIVE(dbl(s(active(x0)))) → MARK(s(s(dbl(x0))))
MARK(sel(y0, dbls(x0))) → ACTIVE(sel(mark(y0), active(dbls(mark(x0)))))
MARK(dbl(dbls(x0))) → ACTIVE(dbl(active(dbls(mark(x0)))))
MARK(dbls(x0)) → ACTIVE(dbls(x0))
MARK(dbls(X)) → MARK(X)
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
MARK(indx(dbls(x0), y1)) → ACTIVE(indx(active(dbls(mark(x0))), y1))
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(dbls(s(x0))) → ACTIVE(dbls(active(s(x0))))
MARK(sel(y0, x1)) → ACTIVE(sel(mark(y0), x1))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel(0, y1)) → ACTIVE(sel(active(0), mark(y1)))
MARK(sel(y0, 0)) → ACTIVE(sel(mark(y0), active(0)))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(sel(x0, x1), y1)) → ACTIVE(sel(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(indx(y0, mark(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(sel(indx(x0, x1), y1)) → ACTIVE(sel(active(indx(mark(x0), x1)), mark(y1)))
MARK(indx(0, y1)) → ACTIVE(indx(active(0), y1))
MARK(indx(y0, active(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(sel(x0, y1)) → ACTIVE(sel(x0, mark(y1)))
MARK(indx(cons(x0, x1), y1)) → ACTIVE(indx(active(cons(x0, x1)), y1))
MARK(dbls(dbls(x0))) → ACTIVE(dbls(active(dbls(mark(x0)))))
MARK(sel(y0, from(x0))) → ACTIVE(sel(mark(y0), active(from(x0))))
MARK(from(X)) → ACTIVE(from(X))
MARK(sel(y0, nil)) → ACTIVE(sel(mark(y0), active(nil)))
MARK(sel(nil, y1)) → ACTIVE(sel(active(nil), mark(y1)))
MARK(dbls(cons(x0, x1))) → ACTIVE(dbls(active(cons(x0, x1))))
MARK(sel(X1, X2)) → MARK(X2)
ACTIVE(dbl(s(mark(x0)))) → MARK(s(s(dbl(x0))))

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We found the following model for the rules of the TRS R. Interpretation over the domain with elements from 0 to 1.sel: 1
from: 0
mark: 0
dbls: 0
0: 0
ACTIVE: 0
indx: 1
active: 0
cons: 0
MARK: 0
dbl: 0
s: 0
nil: 0
By semantic labelling [33] we obtain the following labelled TRS:Q DP problem:
The TRS P consists of the following rules:

ACTIVE.1(sel.0-0(0., cons.1-0(X, Y))) → MARK.1(X)
MARK.1(sel.0-0(y0, x1)) → ACTIVE.1(sel.0-0(mark.0(y0), x1))
MARK.1(sel.1-0(sel.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.1(x0), mark.1(x1))), mark.0(y1)))
MARK.0(dbl.0(X)) → MARK.0(X)
MARK.1(sel.0-0(from.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(from.1(x0)), mark.0(y1)))
MARK.1(indx.0-0(x0, x1)) → ACTIVE.1(indx.0-0(x0, x1))
ACTIVE.0(dbls.0(cons.0-0(y0, active.0(x0)))) → MARK.0(cons.0-0(dbl.0(y0), dbls.0(x0)))
MARK.1(indx.0-0(X1, X2)) → MARK.0(X1)
MARK.1(indx.0-1(dbl.1(x0), y1)) → ACTIVE.1(indx.0-1(active.0(dbl.0(mark.1(x0))), y1))
MARK.1(indx.0-1(cons.0-1(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.0(cons.0-1(x0, x1)), y1))
MARK.1(indx.0-1(s.1(x0), y1)) → ACTIVE.1(indx.0-1(active.0(s.1(x0)), y1))
MARK.0(dbl.0(s.1(x0))) → ACTIVE.0(dbl.0(active.0(s.1(x0))))
MARK.1(sel.0-0(y0, dbls.0(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(dbls.0(mark.0(x0)))))
MARK.1(sel.1-0(y0, dbls.0(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(dbls.0(mark.0(x0)))))
MARK.0(dbls.1(X)) → MARK.1(X)
MARK.1(sel.0-0(cons.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.0-1(x0, x1)), mark.0(y1)))
MARK.1(indx.1-0(indx.1-0(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(indx.0-0(mark.1(x0), x1)), y1))
MARK.1(indx.1-0(sel.1-0(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(sel.0-0(mark.1(x0), mark.0(x1))), y1))
MARK.1(sel.0-1(y0, sel.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(sel.0-0(mark.1(x0), mark.0(x1)))))
MARK.1(indx.0-1(X1, X2)) → MARK.0(X1)
ACTIVE.0(dbls.0(cons.1-0(y0, active.1(x0)))) → MARK.0(cons.0-0(dbl.1(y0), dbls.1(x0)))
MARK.0(dbl.1(indx.0-0(x0, x1))) → ACTIVE.0(dbl.0(active.1(indx.0-0(mark.0(x0), x1))))
ACTIVE.0(dbls.0(cons.1-0(y0, mark.1(x0)))) → MARK.0(cons.0-0(dbl.1(y0), dbls.1(x0)))
MARK.0(dbl.0(from.1(x0))) → ACTIVE.0(dbl.0(active.0(from.1(x0))))
MARK.0(dbl.1(sel.1-1(x0, x1))) → ACTIVE.0(dbl.0(active.1(sel.0-0(mark.1(x0), mark.1(x1)))))
ACTIVE.0(dbls.0(cons.0-1(active.0(x0), y1))) → MARK.0(cons.0-0(dbl.0(x0), dbls.1(y1)))
MARK.1(sel.0-1(y0, indx.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(indx.0-1(mark.1(x0), x1))))
MARK.1(sel.0-1(y0, indx.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(indx.0-0(mark.0(x0), x1))))
MARK.1(indx.1-0(y0, active.0(x1))) → ACTIVE.1(indx.0-0(mark.1(y0), x1))
MARK.1(sel.1-0(y0, cons.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(cons.0-1(x0, x1))))
MARK.1(sel.0-0(X1, X2)) → MARK.0(X1)
MARK.0(dbls.0(s.0(x0))) → ACTIVE.0(dbls.0(active.0(s.0(x0))))
MARK.1(sel.0-0(y0, dbl.1(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(dbl.0(mark.1(x0)))))
MARK.1(sel.0-1(dbls.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbls.0(mark.1(x0))), mark.1(y1)))
ACTIVE.1(sel.0-0(0., cons.1-1(X, Y))) → MARK.1(X)
MARK.0(dbl.0(from.0(x0))) → ACTIVE.0(dbl.0(active.0(from.0(x0))))
MARK.1(indx.0-1(dbls.0(x0), y1)) → ACTIVE.1(indx.0-1(active.0(dbls.0(mark.0(x0))), y1))
MARK.1(sel.0-0(y0, dbls.1(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(dbls.0(mark.1(x0)))))
MARK.0(dbl.0(dbl.1(x0))) → ACTIVE.0(dbl.0(active.0(dbl.0(mark.1(x0)))))
ACTIVE.0(from.1(X)) → MARK.0(cons.1-0(X, from.0(s.1(X))))
MARK.0(dbls.0(from.1(x0))) → ACTIVE.0(dbls.0(active.0(from.1(x0))))
MARK.1(sel.0-1(X1, X2)) → MARK.1(X2)
MARK.1(sel.0-1(from.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(from.1(x0)), mark.1(y1)))
MARK.1(indx.0-0(y0, mark.1(x1))) → ACTIVE.1(indx.0-1(mark.0(y0), x1))
MARK.0(dbl.0(x0)) → ACTIVE.0(dbl.0(x0))
MARK.1(sel.0-1(cons.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.1-1(x0, x1)), mark.1(y1)))
MARK.1(sel.0-1(y0, indx.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(indx.0-1(mark.0(x0), x1))))
MARK.1(sel.1-0(indx.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-1(mark.1(x0), x1)), mark.0(y1)))
MARK.1(indx.1-1(indx.0-0(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(indx.0-0(mark.0(x0), x1)), y1))
MARK.0(dbls.1(sel.1-1(x0, x1))) → ACTIVE.0(dbls.0(active.1(sel.0-0(mark.1(x0), mark.1(x1)))))
MARK.1(indx.1-0(x0, x1)) → ACTIVE.1(indx.1-0(x0, x1))
MARK.0(dbl.1(X)) → MARK.1(X)
ACTIVE.0(dbls.0(cons.0-0(active.1(x0), y1))) → MARK.0(cons.0-0(dbl.1(x0), dbls.0(y1)))
MARK.1(sel.1-0(sel.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.0(x0), mark.1(x1))), mark.0(y1)))
MARK.0(dbls.1(sel.1-0(x0, x1))) → ACTIVE.0(dbls.0(active.1(sel.0-0(mark.1(x0), mark.0(x1)))))
MARK.0(dbls.0(cons.1-1(x0, x1))) → ACTIVE.0(dbls.0(active.0(cons.1-1(x0, x1))))
MARK.1(sel.1-0(indx.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-0(mark.1(x0), x1)), mark.0(y1)))
MARK.1(sel.0-1(y0, indx.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(indx.0-0(mark.1(x0), x1))))
MARK.1(sel.1-1(sel.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.1(x0), mark.1(x1))), mark.1(y1)))
MARK.1(sel.1-1(sel.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.0(x0), mark.0(x1))), mark.1(y1)))
ACTIVE.1(sel.0-0(s.0(X), cons.1-1(Y, Z))) → MARK.1(sel.0-1(X, Z))
MARK.1(indx.0-0(cons.1-0(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.0(cons.1-0(x0, x1)), y1))
ACTIVE.1(indx.0-0(cons.1-1(X, Y), Z)) → MARK.0(cons.1-1(sel.1-0(X, Z), indx.1-0(Y, Z)))
MARK.1(sel.1-0(y0, cons.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(cons.1-1(x0, x1))))
MARK.0(dbl.0(cons.0-1(x0, x1))) → ACTIVE.0(dbl.0(active.0(cons.0-1(x0, x1))))
ACTIVE.0(dbls.0(cons.0-0(mark.1(x0), y1))) → MARK.0(cons.0-0(dbl.1(x0), dbls.0(y1)))
MARK.1(sel.0-1(y0, sel.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(sel.0-0(mark.0(x0), mark.0(x1)))))
ACTIVE.0(dbl.0(s.0(active.0(x0)))) → MARK.0(s.0(s.0(dbl.0(x0))))
MARK.0(dbl.0(dbls.0(x0))) → ACTIVE.0(dbl.0(active.0(dbls.0(mark.0(x0)))))
MARK.1(indx.0-1(cons.1-1(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.0(cons.1-1(x0, x1)), y1))
MARK.1(sel.1-1(y0, sel.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(sel.0-0(mark.1(x0), mark.1(x1)))))
MARK.1(sel.1-0(y0, cons.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(cons.0-0(x0, x1))))
ACTIVE.0(dbls.0(cons.0-0(mark.0(x0), y1))) → MARK.0(cons.0-0(dbl.0(x0), dbls.0(y1)))
MARK.1(sel.0-0(0., y1)) → ACTIVE.1(sel.0-0(active.0(0.), mark.0(y1)))
MARK.1(sel.0-0(y0, 0.)) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(0.)))
ACTIVE.1(sel.0-0(s.1(X), cons.1-1(Y, Z))) → MARK.1(sel.1-1(X, Z))
MARK.1(sel.0-1(cons.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.0-1(x0, x1)), mark.1(y1)))
MARK.0(dbls.1(indx.0-1(x0, x1))) → ACTIVE.0(dbls.0(active.1(indx.0-1(mark.0(x0), x1))))
MARK.0(dbl.1(sel.0-1(x0, x1))) → ACTIVE.0(dbl.0(active.1(sel.0-0(mark.0(x0), mark.1(x1)))))
MARK.1(indx.0-1(dbl.0(x0), y1)) → ACTIVE.1(indx.0-1(active.0(dbl.0(mark.0(x0))), y1))
MARK.1(sel.0-1(s.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(s.1(x0)), mark.1(y1)))
MARK.1(sel.1-1(indx.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-0(mark.1(x0), x1)), mark.1(y1)))
MARK.1(indx.1-0(indx.0-1(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(indx.0-1(mark.0(x0), x1)), y1))
MARK.1(sel.0-0(dbl.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbl.0(mark.0(x0))), mark.0(y1)))
MARK.1(indx.0-0(0., y1)) → ACTIVE.1(indx.0-0(active.0(0.), y1))
MARK.0(dbl.0(cons.1-1(x0, x1))) → ACTIVE.0(dbl.0(active.0(cons.1-1(x0, x1))))
MARK.1(indx.1-0(indx.0-0(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(indx.0-0(mark.0(x0), x1)), y1))
MARK.0(dbls.0(dbl.1(x0))) → ACTIVE.0(dbls.0(active.0(dbl.0(mark.1(x0)))))
MARK.1(indx.0-1(from.0(x0), y1)) → ACTIVE.1(indx.0-1(active.0(from.0(x0)), y1))
MARK.0(dbls.0(from.0(x0))) → ACTIVE.0(dbls.0(active.0(from.0(x0))))
MARK.1(indx.0-0(nil., y1)) → ACTIVE.1(indx.0-0(active.0(nil.), y1))
MARK.0(dbl.0(cons.1-0(x0, x1))) → ACTIVE.0(dbl.0(active.0(cons.1-0(x0, x1))))
MARK.1(indx.1-1(x0, x1)) → ACTIVE.1(indx.1-1(x0, x1))
MARK.0(dbl.1(sel.0-0(x0, x1))) → ACTIVE.0(dbl.0(active.1(sel.0-0(mark.0(x0), mark.0(x1)))))
ACTIVE.0(dbls.0(cons.1-0(y0, mark.0(x0)))) → MARK.0(cons.0-0(dbl.1(y0), dbls.0(x0)))
MARK.1(sel.0-1(cons.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.0-0(x0, x1)), mark.1(y1)))
MARK.1(indx.0-0(y0, active.1(x1))) → ACTIVE.1(indx.0-1(mark.0(y0), x1))
MARK.1(indx.1-1(X1, X2)) → MARK.1(X1)
MARK.1(sel.1-1(sel.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.1(x0), mark.0(x1))), mark.1(y1)))
MARK.1(sel.1-1(y0, indx.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(indx.0-1(mark.1(x0), x1))))
MARK.1(sel.0-1(y0, x1)) → ACTIVE.1(sel.0-1(mark.0(y0), x1))
MARK.0(dbls.1(indx.0-0(x0, x1))) → ACTIVE.0(dbls.0(active.1(indx.0-0(mark.0(x0), x1))))
MARK.1(indx.1-0(y0, mark.0(x1))) → ACTIVE.1(indx.0-0(mark.1(y0), x1))
MARK.1(sel.0-1(y0, sel.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(sel.0-0(mark.0(x0), mark.1(x1)))))
MARK.1(sel.1-0(indx.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-0(mark.0(x0), x1)), mark.0(y1)))
MARK.1(sel.0-0(X1, X2)) → MARK.0(X2)
MARK.1(sel.1-0(sel.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.0(x0), mark.0(x1))), mark.0(y1)))
MARK.0(from.0(X)) → ACTIVE.0(from.0(X))
MARK.1(sel.1-0(y0, from.1(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(from.1(x0))))
MARK.1(sel.0-0(y0, s.0(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(s.0(x0))))
MARK.0(from.1(X)) → ACTIVE.0(from.1(X))
MARK.0(dbl.1(indx.0-1(x0, x1))) → ACTIVE.0(dbl.0(active.1(indx.0-1(mark.0(x0), x1))))
MARK.1(sel.0-0(y0, s.1(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(s.1(x0))))
MARK.1(indx.1-0(indx.1-1(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(indx.0-1(mark.1(x0), x1)), y1))
MARK.1(sel.1-0(X1, X2)) → MARK.1(X1)
MARK.1(sel.0-0(y0, cons.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(cons.1-1(x0, x1))))
MARK.0(dbls.1(sel.0-1(x0, x1))) → ACTIVE.0(dbls.0(active.1(sel.0-0(mark.0(x0), mark.1(x1)))))
MARK.0(dbls.1(indx.1-1(x0, x1))) → ACTIVE.0(dbls.0(active.1(indx.0-1(mark.1(x0), x1))))
ACTIVE.1(sel.0-0(s.1(X), cons.0-0(Y, Z))) → MARK.1(sel.1-0(X, Z))
MARK.1(sel.1-0(y0, x1)) → ACTIVE.1(sel.0-0(mark.1(y0), x1))
MARK.1(indx.0-1(s.0(x0), y1)) → ACTIVE.1(indx.0-1(active.0(s.0(x0)), y1))
MARK.1(sel.1-0(X1, X2)) → MARK.0(X2)
MARK.1(indx.0-0(from.1(x0), y1)) → ACTIVE.1(indx.0-0(active.0(from.1(x0)), y1))
MARK.0(dbls.0(cons.0-1(x0, x1))) → ACTIVE.0(dbls.0(active.0(cons.0-1(x0, x1))))
MARK.1(sel.1-0(x0, y1)) → ACTIVE.1(sel.1-0(x0, mark.0(y1)))
MARK.1(sel.1-1(indx.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-0(mark.0(x0), x1)), mark.1(y1)))
MARK.1(sel.0-0(dbls.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbls.0(mark.0(x0))), mark.0(y1)))
MARK.1(sel.1-0(y0, s.1(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(s.1(x0))))
MARK.1(sel.1-1(y0, sel.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(sel.0-0(mark.0(x0), mark.0(x1)))))
ACTIVE.0(from.0(X)) → MARK.0(cons.0-0(X, from.0(s.0(X))))
MARK.0(dbl.1(sel.1-0(x0, x1))) → ACTIVE.0(dbl.0(active.1(sel.0-0(mark.1(x0), mark.0(x1)))))
MARK.1(indx.0-0(s.1(x0), y1)) → ACTIVE.1(indx.0-0(active.0(s.1(x0)), y1))
MARK.1(sel.1-1(sel.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.0(x0), mark.1(x1))), mark.1(y1)))
MARK.1(indx.0-0(cons.0-0(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.0(cons.0-0(x0, x1)), y1))
MARK.1(sel.0-0(cons.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.0-0(x0, x1)), mark.0(y1)))
MARK.1(sel.0-1(X1, X2)) → MARK.0(X1)
ACTIVE.1(sel.0-0(s.0(X), cons.0-0(Y, Z))) → MARK.1(sel.0-0(X, Z))
MARK.0(dbls.0(dbls.0(x0))) → ACTIVE.0(dbls.0(active.0(dbls.0(mark.0(x0)))))
MARK.1(indx.0-0(dbl.0(x0), y1)) → ACTIVE.1(indx.0-0(active.0(dbl.0(mark.0(x0))), y1))
MARK.1(sel.1-1(X1, X2)) → MARK.1(X1)
MARK.0(dbl.0(s.0(x0))) → ACTIVE.0(dbl.0(active.0(s.0(x0))))
MARK.1(sel.0-1(dbls.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbls.0(mark.0(x0))), mark.1(y1)))
MARK.1(sel.1-0(y0, from.0(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(from.0(x0))))
MARK.1(sel.0-1(nil., y1)) → ACTIVE.1(sel.0-0(active.0(nil.), mark.1(y1)))
MARK.1(indx.1-0(sel.0-0(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(sel.0-0(mark.0(x0), mark.0(x1))), y1))
MARK.1(sel.0-1(s.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(s.0(x0)), mark.1(y1)))
MARK.1(sel.0-0(dbl.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbl.0(mark.1(x0))), mark.0(y1)))
MARK.1(sel.0-0(y0, from.1(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(from.1(x0))))
MARK.1(indx.0-0(dbls.1(x0), y1)) → ACTIVE.1(indx.0-0(active.0(dbls.0(mark.1(x0))), y1))
ACTIVE.0(dbls.0(cons.1-0(y0, active.0(x0)))) → MARK.0(cons.0-0(dbl.1(y0), dbls.0(x0)))
MARK.0(dbls.0(x0)) → ACTIVE.0(dbls.0(x0))
MARK.1(indx.1-1(sel.1-1(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(sel.0-0(mark.1(x0), mark.1(x1))), y1))
ACTIVE.1(indx.0-0(cons.1-0(X, Y), Z)) → MARK.0(cons.1-1(sel.1-0(X, Z), indx.0-0(Y, Z)))
MARK.1(sel.0-0(from.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(from.0(x0)), mark.0(y1)))
ACTIVE.0(dbls.0(cons.0-0(y0, active.1(x0)))) → MARK.0(cons.0-0(dbl.0(y0), dbls.1(x0)))
ACTIVE.1(sel.0-0(s.0(X), cons.0-1(Y, Z))) → MARK.1(sel.0-1(X, Z))
MARK.0(dbls.0(X)) → MARK.0(X)
MARK.1(indx.0-0(cons.0-1(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.0(cons.0-1(x0, x1)), y1))
MARK.1(sel.0-0(y0, cons.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(cons.0-1(x0, x1))))
MARK.1(sel.1-0(y0, 0.)) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(0.)))
MARK.1(indx.0-1(from.1(x0), y1)) → ACTIVE.1(indx.0-1(active.0(from.1(x0)), y1))
MARK.1(sel.1-1(y0, indx.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(indx.0-1(mark.0(x0), x1))))
ACTIVE.1(sel.0-0(0., cons.0-0(X, Y))) → MARK.0(X)
MARK.1(indx.1-0(sel.1-1(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(sel.0-0(mark.1(x0), mark.1(x1))), y1))
ACTIVE.0(dbls.0(cons.0-0(y0, mark.0(x0)))) → MARK.0(cons.0-0(dbl.0(y0), dbls.0(x0)))
MARK.1(sel.1-0(sel.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.1(x0), mark.0(x1))), mark.0(y1)))
ACTIVE.1(sel.0-0(s.0(X), cons.1-0(Y, Z))) → MARK.1(sel.0-0(X, Z))
ACTIVE.1(indx.0-1(cons.0-1(X, Y), Z)) → MARK.0(cons.1-1(sel.0-1(X, Z), indx.1-1(Y, Z)))
MARK.1(indx.1-1(indx.1-1(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(indx.0-1(mark.1(x0), x1)), y1))
ACTIVE.1(indx.0-1(cons.1-0(X, Y), Z)) → MARK.0(cons.1-1(sel.1-1(X, Z), indx.0-1(Y, Z)))
MARK.0(dbls.0(dbls.1(x0))) → ACTIVE.0(dbls.0(active.0(dbls.0(mark.1(x0)))))
MARK.0(dbls.0(s.1(x0))) → ACTIVE.0(dbls.0(active.0(s.1(x0))))
MARK.1(sel.0-0(dbls.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbls.0(mark.1(x0))), mark.0(y1)))
MARK.1(indx.0-1(dbls.1(x0), y1)) → ACTIVE.1(indx.0-1(active.0(dbls.0(mark.1(x0))), y1))
MARK.0(dbl.0(dbl.0(x0))) → ACTIVE.0(dbl.0(active.0(dbl.0(mark.0(x0)))))
ACTIVE.1(sel.0-0(s.1(X), cons.0-1(Y, Z))) → MARK.1(sel.1-1(X, Z))
MARK.1(sel.0-0(s.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(s.1(x0)), mark.0(y1)))
MARK.1(sel.0-1(x0, y1)) → ACTIVE.1(sel.0-0(x0, mark.1(y1)))
MARK.1(sel.1-1(y0, sel.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(sel.0-0(mark.1(x0), mark.0(x1)))))
MARK.1(sel.0-0(y0, cons.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(cons.1-0(x0, x1))))
MARK.1(indx.1-0(y0, mark.1(x1))) → ACTIVE.1(indx.0-1(mark.1(y0), x1))
MARK.0(dbls.0(dbl.0(x0))) → ACTIVE.0(dbls.0(active.0(dbl.0(mark.0(x0)))))
MARK.1(indx.0-0(s.0(x0), y1)) → ACTIVE.1(indx.0-0(active.0(s.0(x0)), y1))
MARK.1(sel.1-1(x0, y1)) → ACTIVE.1(sel.1-0(x0, mark.1(y1)))
MARK.1(sel.1-0(y0, dbls.1(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(dbls.0(mark.1(x0)))))
MARK.1(sel.1-1(y0, sel.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(sel.0-0(mark.0(x0), mark.1(x1)))))
MARK.0(dbls.1(x0)) → ACTIVE.0(dbls.1(x0))
MARK.1(indx.0-1(nil., y1)) → ACTIVE.1(indx.0-1(active.0(nil.), y1))
MARK.1(sel.1-1(X1, X2)) → MARK.1(X2)
MARK.1(sel.0-1(from.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(from.0(x0)), mark.1(y1)))
ACTIVE.0(dbl.0(s.0(active.1(x0)))) → MARK.0(s.0(s.0(dbl.1(x0))))
MARK.1(sel.0-0(y0, from.0(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(from.0(x0))))
MARK.1(sel.1-1(y0, indx.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(indx.0-0(mark.1(x0), x1))))
ACTIVE.0(dbls.0(cons.0-1(active.1(x0), y1))) → MARK.0(cons.0-0(dbl.1(x0), dbls.1(y1)))
MARK.1(sel.1-1(y0, x1)) → ACTIVE.1(sel.0-1(mark.1(y0), x1))
MARK.1(indx.1-0(X1, X2)) → MARK.1(X1)
MARK.0(dbls.1(sel.0-0(x0, x1))) → ACTIVE.0(dbls.0(active.1(sel.0-0(mark.0(x0), mark.0(x1)))))
ACTIVE.1(indx.0-0(cons.0-0(X, Y), Z)) → MARK.0(cons.1-1(sel.0-0(X, Z), indx.0-0(Y, Z)))
MARK.1(indx.0-1(cons.0-0(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.0(cons.0-0(x0, x1)), y1))
MARK.1(indx.1-1(sel.1-0(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(sel.0-0(mark.1(x0), mark.0(x1))), y1))
MARK.1(sel.0-1(0., y1)) → ACTIVE.1(sel.0-0(active.0(0.), mark.1(y1)))
MARK.1(sel.1-0(indx.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-1(mark.0(x0), x1)), mark.0(y1)))
MARK.1(sel.0-0(y0, cons.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(cons.0-0(x0, x1))))
MARK.1(sel.0-0(x0, y1)) → ACTIVE.1(sel.0-0(x0, mark.0(y1)))
MARK.1(indx.1-1(sel.0-0(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(sel.0-0(mark.0(x0), mark.0(x1))), y1))
MARK.1(indx.0-1(0., y1)) → ACTIVE.1(indx.0-1(active.0(0.), y1))
MARK.1(sel.0-1(y0, sel.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(sel.0-0(mark.1(x0), mark.1(x1)))))
MARK.1(indx.1-1(indx.1-0(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(indx.0-0(mark.1(x0), x1)), y1))
MARK.1(indx.0-0(from.0(x0), y1)) → ACTIVE.1(indx.0-0(active.0(from.0(x0)), y1))
MARK.0(dbl.1(indx.1-0(x0, x1))) → ACTIVE.0(dbl.0(active.1(indx.0-0(mark.1(x0), x1))))
ACTIVE.0(dbl.0(s.0(mark.1(x0)))) → MARK.0(s.0(s.0(dbl.1(x0))))
MARK.1(sel.0-1(dbl.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbl.0(mark.0(x0))), mark.1(y1)))
MARK.1(sel.0-1(cons.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.1-0(x0, x1)), mark.1(y1)))
MARK.1(sel.0-0(cons.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.1-1(x0, x1)), mark.0(y1)))
MARK.0(dbls.0(cons.1-0(x0, x1))) → ACTIVE.0(dbls.0(active.0(cons.1-0(x0, x1))))
MARK.1(sel.1-1(y0, indx.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(indx.0-0(mark.0(x0), x1))))
MARK.0(dbls.1(indx.1-0(x0, x1))) → ACTIVE.0(dbls.0(active.1(indx.0-0(mark.1(x0), x1))))
MARK.0(dbl.1(indx.1-1(x0, x1))) → ACTIVE.0(dbl.0(active.1(indx.0-1(mark.1(x0), x1))))
MARK.0(dbl.0(cons.0-0(x0, x1))) → ACTIVE.0(dbl.0(active.0(cons.0-0(x0, x1))))
ACTIVE.0(dbls.0(cons.0-1(mark.1(x0), y1))) → MARK.0(cons.0-0(dbl.1(x0), dbls.1(y1)))
MARK.1(sel.1-1(indx.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-1(mark.1(x0), x1)), mark.1(y1)))
MARK.1(sel.0-0(cons.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.1-0(x0, x1)), mark.0(y1)))
ACTIVE.0(dbls.0(cons.0-0(y0, mark.1(x0)))) → MARK.0(cons.0-0(dbl.0(y0), dbls.1(x0)))
MARK.1(indx.1-0(sel.0-1(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(sel.0-0(mark.0(x0), mark.1(x1))), y1))
MARK.1(sel.1-0(y0, dbl.1(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(dbl.0(mark.1(x0)))))
MARK.1(indx.1-1(sel.0-1(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(sel.0-0(mark.0(x0), mark.1(x1))), y1))
ACTIVE.0(dbl.0(s.0(mark.0(x0)))) → MARK.0(s.0(s.0(dbl.0(x0))))
ACTIVE.0(dbls.0(cons.0-0(active.0(x0), y1))) → MARK.0(cons.0-0(dbl.0(x0), dbls.0(y1)))
MARK.1(sel.1-0(y0, dbl.0(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(dbl.0(mark.0(x0)))))
MARK.0(dbl.0(dbls.1(x0))) → ACTIVE.0(dbl.0(active.0(dbls.0(mark.1(x0)))))
MARK.1(sel.0-0(s.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(s.0(x0)), mark.0(y1)))
MARK.1(indx.0-0(y0, mark.0(x1))) → ACTIVE.1(indx.0-0(mark.0(y0), x1))
MARK.1(indx.0-1(cons.1-0(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.0(cons.1-0(x0, x1)), y1))
MARK.1(sel.1-0(y0, nil.)) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(nil.)))
ACTIVE.1(indx.0-1(cons.1-1(X, Y), Z)) → MARK.0(cons.1-1(sel.1-1(X, Z), indx.1-1(Y, Z)))
ACTIVE.0(dbls.0(cons.0-1(mark.0(x0), y1))) → MARK.0(cons.0-0(dbl.0(x0), dbls.1(y1)))
MARK.0(dbls.0(cons.0-0(x0, x1))) → ACTIVE.0(dbls.0(active.0(cons.0-0(x0, x1))))
MARK.1(sel.0-0(y0, nil.)) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(nil.)))
MARK.1(sel.0-0(nil., y1)) → ACTIVE.1(sel.0-0(active.0(nil.), mark.0(y1)))
ACTIVE.1(sel.0-0(s.1(X), cons.1-0(Y, Z))) → MARK.1(sel.1-0(X, Z))
MARK.1(sel.0-1(dbl.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbl.0(mark.1(x0))), mark.1(y1)))
MARK.1(indx.1-1(indx.0-1(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(indx.0-1(mark.0(x0), x1)), y1))
MARK.1(sel.1-0(y0, s.0(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(s.0(x0))))
MARK.1(indx.0-0(dbls.0(x0), y1)) → ACTIVE.1(indx.0-0(active.0(dbls.0(mark.0(x0))), y1))
MARK.1(sel.0-0(y0, dbl.0(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(dbl.0(mark.0(x0)))))
MARK.1(indx.0-1(x0, x1)) → ACTIVE.1(indx.0-1(x0, x1))
MARK.1(indx.1-0(y0, active.1(x1))) → ACTIVE.1(indx.0-1(mark.1(y0), x1))
ACTIVE.1(sel.0-0(0., cons.0-1(X, Y))) → MARK.0(X)
ACTIVE.1(indx.0-1(cons.0-0(X, Y), Z)) → MARK.0(cons.1-1(sel.0-1(X, Z), indx.0-1(Y, Z)))
MARK.1(indx.0-0(cons.1-1(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.0(cons.1-1(x0, x1)), y1))
MARK.1(indx.0-0(y0, active.0(x1))) → ACTIVE.1(indx.0-0(mark.0(y0), x1))
MARK.1(sel.1-1(indx.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-1(mark.0(x0), x1)), mark.1(y1)))
MARK.1(sel.1-0(y0, cons.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(cons.1-0(x0, x1))))
MARK.1(indx.0-0(dbl.1(x0), y1)) → ACTIVE.1(indx.0-0(active.0(dbl.0(mark.1(x0))), y1))
ACTIVE.1(indx.0-0(cons.0-1(X, Y), Z)) → MARK.0(cons.1-1(sel.0-0(X, Z), indx.1-0(Y, Z)))
MARK.0(dbl.1(x0)) → ACTIVE.0(dbl.1(x0))

The TRS R consists of the following rules:

from.0(active.0(X)) → from.0(X)
active.1(sel.0-0(0., cons.0-0(X, Y))) → mark.0(X)
cons.0-1(active.0(X1), X2) → cons.0-1(X1, X2)
active.0(dbl.0(0.)) → mark.0(0.)
indx.0-0(X1, active.1(X2)) → indx.0-1(X1, X2)
active.1(indx.0-0(cons.1-1(X, Y), Z)) → mark.0(cons.1-1(sel.1-0(X, Z), indx.1-0(Y, Z)))
sel.0-1(active.0(X1), X2) → sel.0-1(X1, X2)
active.1(sel.0-0(s.1(X), cons.1-0(Y, Z))) → mark.1(sel.1-0(X, Z))
cons.0-0(active.0(X1), X2) → cons.0-0(X1, X2)
dbls.0(active.1(X)) → dbls.1(X)
indx.1-0(X1, active.1(X2)) → indx.1-1(X1, X2)
active.1(indx.0-0(cons.0-1(X, Y), Z)) → mark.0(cons.1-1(sel.0-0(X, Z), indx.1-0(Y, Z)))
active.0(dbls.0(cons.1-1(X, Y))) → mark.0(cons.0-0(dbl.1(X), dbls.1(Y)))
dbl.0(active.0(X)) → dbl.0(X)
active.0(from.1(X)) → mark.0(cons.1-0(X, from.0(s.1(X))))
active.1(sel.0-0(0., cons.0-1(X, Y))) → mark.0(X)
sel.0-0(mark.1(X1), X2) → sel.1-0(X1, X2)
indx.0-0(active.0(X1), X2) → indx.0-0(X1, X2)
mark.0(s.1(X)) → active.0(s.1(X))
cons.0-0(X1, mark.0(X2)) → cons.0-0(X1, X2)
dbl.0(mark.1(X)) → dbl.1(X)
indx.0-1(active.1(X1), X2) → indx.1-1(X1, X2)
mark.0(s.0(X)) → active.0(s.0(X))
mark.1(sel.1-0(X1, X2)) → active.1(sel.0-0(mark.1(X1), mark.0(X2)))
mark.0(cons.0-1(X1, X2)) → active.0(cons.0-1(X1, X2))
dbls.0(mark.1(X)) → dbls.1(X)
active.1(sel.0-0(0., cons.1-1(X, Y))) → mark.1(X)
active.1(indx.0-1(cons.0-0(X, Y), Z)) → mark.0(cons.1-1(sel.0-1(X, Z), indx.0-1(Y, Z)))
active.0(dbls.0(cons.0-0(X, Y))) → mark.0(cons.0-0(dbl.0(X), dbls.0(Y)))
mark.0(cons.1-1(X1, X2)) → active.0(cons.1-1(X1, X2))
sel.0-1(mark.1(X1), X2) → sel.1-1(X1, X2)
cons.0-0(X1, active.0(X2)) → cons.0-0(X1, X2)
cons.1-0(X1, mark.1(X2)) → cons.1-1(X1, X2)
sel.0-1(mark.0(X1), X2) → sel.0-1(X1, X2)
indx.0-1(active.0(X1), X2) → indx.0-1(X1, X2)
sel.0-0(active.0(X1), X2) → sel.0-0(X1, X2)
dbl.0(mark.0(X)) → dbl.0(X)
cons.0-1(mark.1(X1), X2) → cons.1-1(X1, X2)
mark.0(nil.) → active.0(nil.)
indx.0-0(X1, mark.0(X2)) → indx.0-0(X1, X2)
mark.1(sel.1-1(X1, X2)) → active.1(sel.0-0(mark.1(X1), mark.1(X2)))
indx.0-0(mark.0(X1), X2) → indx.0-0(X1, X2)
mark.1(indx.0-0(X1, X2)) → active.1(indx.0-0(mark.0(X1), X2))
active.0(dbls.0(cons.1-0(X, Y))) → mark.0(cons.0-0(dbl.1(X), dbls.0(Y)))
sel.0-0(mark.0(X1), X2) → sel.0-0(X1, X2)
indx.0-0(active.1(X1), X2) → indx.1-0(X1, X2)
active.1(indx.0-0(nil., X)) → mark.0(nil.)
indx.1-0(X1, mark.1(X2)) → indx.1-1(X1, X2)
indx.0-0(mark.1(X1), X2) → indx.1-0(X1, X2)
mark.1(indx.0-1(X1, X2)) → active.1(indx.0-1(mark.0(X1), X2))
mark.1(indx.1-0(X1, X2)) → active.1(indx.0-0(mark.1(X1), X2))
active.1(sel.0-0(s.1(X), cons.0-0(Y, Z))) → mark.1(sel.1-0(X, Z))
active.1(sel.0-0(s.0(X), cons.0-1(Y, Z))) → mark.1(sel.0-1(X, Z))
active.1(indx.0-0(cons.0-0(X, Y), Z)) → mark.0(cons.1-1(sel.0-0(X, Z), indx.0-0(Y, Z)))
mark.0(dbls.1(X)) → active.0(dbls.0(mark.1(X)))
mark.1(sel.0-1(X1, X2)) → active.1(sel.0-0(mark.0(X1), mark.1(X2)))
active.1(indx.0-1(cons.1-1(X, Y), Z)) → mark.0(cons.1-1(sel.1-1(X, Z), indx.1-1(Y, Z)))
indx.0-0(X1, mark.1(X2)) → indx.0-1(X1, X2)
active.0(dbls.0(nil.)) → mark.0(nil.)
sel.0-1(active.1(X1), X2) → sel.1-1(X1, X2)
cons.1-0(X1, active.0(X2)) → cons.1-0(X1, X2)
cons.0-0(X1, active.1(X2)) → cons.0-1(X1, X2)
sel.1-0(X1, active.1(X2)) → sel.1-1(X1, X2)
cons.0-0(X1, mark.1(X2)) → cons.0-1(X1, X2)
mark.1(indx.1-1(X1, X2)) → active.1(indx.0-1(mark.1(X1), X2))
cons.1-0(X1, active.1(X2)) → cons.1-1(X1, X2)
from.0(mark.0(X)) → from.0(X)
mark.0(dbl.1(X)) → active.0(dbl.0(mark.1(X)))
mark.0(from.1(X)) → active.0(from.1(X))
indx.1-0(X1, mark.0(X2)) → indx.1-0(X1, X2)
active.0(dbls.0(cons.0-1(X, Y))) → mark.0(cons.0-0(dbl.0(X), dbls.1(Y)))
mark.0(dbls.0(X)) → active.0(dbls.0(mark.0(X)))
active.1(sel.0-0(s.1(X), cons.0-1(Y, Z))) → mark.1(sel.1-1(X, Z))
dbl.0(active.1(X)) → dbl.1(X)
cons.0-1(mark.0(X1), X2) → cons.0-1(X1, X2)
sel.0-0(X1, mark.0(X2)) → sel.0-0(X1, X2)
mark.0(0.) → active.0(0.)
active.0(dbl.0(s.1(X))) → mark.0(s.0(s.0(dbl.1(X))))
active.1(sel.0-0(0., cons.1-0(X, Y))) → mark.1(X)
sel.0-0(X1, mark.1(X2)) → sel.0-1(X1, X2)
cons.0-0(active.1(X1), X2) → cons.1-0(X1, X2)
indx.1-0(X1, active.0(X2)) → indx.1-0(X1, X2)
dbls.0(active.0(X)) → dbls.0(X)
active.0(from.0(X)) → mark.0(cons.0-0(X, from.0(s.0(X))))
active.1(sel.0-0(s.1(X), cons.1-1(Y, Z))) → mark.1(sel.1-1(X, Z))
cons.1-0(X1, mark.0(X2)) → cons.1-0(X1, X2)
indx.0-1(mark.0(X1), X2) → indx.0-1(X1, X2)
mark.0(cons.1-0(X1, X2)) → active.0(cons.1-0(X1, X2))
active.1(sel.0-0(s.0(X), cons.1-1(Y, Z))) → mark.1(sel.0-1(X, Z))
sel.1-0(X1, active.0(X2)) → sel.1-0(X1, X2)
indx.0-1(mark.1(X1), X2) → indx.1-1(X1, X2)
sel.0-0(X1, active.0(X2)) → sel.0-0(X1, X2)
active.1(indx.0-1(cons.0-1(X, Y), Z)) → mark.0(cons.1-1(sel.0-1(X, Z), indx.1-1(Y, Z)))
s.0(active.0(X)) → s.0(X)
cons.0-1(active.1(X1), X2) → cons.1-1(X1, X2)
sel.0-0(active.1(X1), X2) → sel.1-0(X1, X2)
active.1(sel.0-0(s.0(X), cons.1-0(Y, Z))) → mark.1(sel.0-0(X, Z))
s.0(mark.1(X)) → s.1(X)
mark.0(dbl.0(X)) → active.0(dbl.0(mark.0(X)))
sel.1-0(X1, mark.0(X2)) → sel.1-0(X1, X2)
indx.0-0(X1, active.0(X2)) → indx.0-0(X1, X2)
active.1(indx.0-1(nil., X)) → mark.0(nil.)
sel.0-0(X1, active.1(X2)) → sel.0-1(X1, X2)
mark.0(cons.0-0(X1, X2)) → active.0(cons.0-0(X1, X2))
mark.0(from.0(X)) → active.0(from.0(X))
from.0(active.1(X)) → from.1(X)
s.0(active.1(X)) → s.1(X)
active.0(dbl.0(s.0(X))) → mark.0(s.0(s.0(dbl.0(X))))
from.0(mark.1(X)) → from.1(X)
cons.0-0(mark.1(X1), X2) → cons.1-0(X1, X2)
sel.1-0(X1, mark.1(X2)) → sel.1-1(X1, X2)
active.1(indx.0-1(cons.1-0(X, Y), Z)) → mark.0(cons.1-1(sel.1-1(X, Z), indx.0-1(Y, Z)))
active.1(indx.0-0(cons.1-0(X, Y), Z)) → mark.0(cons.1-1(sel.1-0(X, Z), indx.0-0(Y, Z)))
s.0(mark.0(X)) → s.0(X)
mark.1(sel.0-0(X1, X2)) → active.1(sel.0-0(mark.0(X1), mark.0(X2)))
dbls.0(mark.0(X)) → dbls.0(X)
active.1(sel.0-0(s.0(X), cons.0-0(Y, Z))) → mark.1(sel.0-0(X, Z))
cons.0-0(mark.0(X1), X2) → cons.0-0(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Narrowing
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ SemLabProof
QDP
                                                                            ↳ DependencyGraphProof
                                                                        ↳ SemLabProof2

Q DP problem:
The TRS P consists of the following rules:

ACTIVE.1(sel.0-0(0., cons.1-0(X, Y))) → MARK.1(X)
MARK.1(sel.0-0(y0, x1)) → ACTIVE.1(sel.0-0(mark.0(y0), x1))
MARK.1(sel.1-0(sel.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.1(x0), mark.1(x1))), mark.0(y1)))
MARK.0(dbl.0(X)) → MARK.0(X)
MARK.1(sel.0-0(from.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(from.1(x0)), mark.0(y1)))
MARK.1(indx.0-0(x0, x1)) → ACTIVE.1(indx.0-0(x0, x1))
ACTIVE.0(dbls.0(cons.0-0(y0, active.0(x0)))) → MARK.0(cons.0-0(dbl.0(y0), dbls.0(x0)))
MARK.1(indx.0-0(X1, X2)) → MARK.0(X1)
MARK.1(indx.0-1(dbl.1(x0), y1)) → ACTIVE.1(indx.0-1(active.0(dbl.0(mark.1(x0))), y1))
MARK.1(indx.0-1(cons.0-1(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.0(cons.0-1(x0, x1)), y1))
MARK.1(indx.0-1(s.1(x0), y1)) → ACTIVE.1(indx.0-1(active.0(s.1(x0)), y1))
MARK.0(dbl.0(s.1(x0))) → ACTIVE.0(dbl.0(active.0(s.1(x0))))
MARK.1(sel.0-0(y0, dbls.0(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(dbls.0(mark.0(x0)))))
MARK.1(sel.1-0(y0, dbls.0(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(dbls.0(mark.0(x0)))))
MARK.0(dbls.1(X)) → MARK.1(X)
MARK.1(sel.0-0(cons.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.0-1(x0, x1)), mark.0(y1)))
MARK.1(indx.1-0(indx.1-0(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(indx.0-0(mark.1(x0), x1)), y1))
MARK.1(indx.1-0(sel.1-0(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(sel.0-0(mark.1(x0), mark.0(x1))), y1))
MARK.1(sel.0-1(y0, sel.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(sel.0-0(mark.1(x0), mark.0(x1)))))
MARK.1(indx.0-1(X1, X2)) → MARK.0(X1)
ACTIVE.0(dbls.0(cons.1-0(y0, active.1(x0)))) → MARK.0(cons.0-0(dbl.1(y0), dbls.1(x0)))
MARK.0(dbl.1(indx.0-0(x0, x1))) → ACTIVE.0(dbl.0(active.1(indx.0-0(mark.0(x0), x1))))
ACTIVE.0(dbls.0(cons.1-0(y0, mark.1(x0)))) → MARK.0(cons.0-0(dbl.1(y0), dbls.1(x0)))
MARK.0(dbl.0(from.1(x0))) → ACTIVE.0(dbl.0(active.0(from.1(x0))))
MARK.0(dbl.1(sel.1-1(x0, x1))) → ACTIVE.0(dbl.0(active.1(sel.0-0(mark.1(x0), mark.1(x1)))))
ACTIVE.0(dbls.0(cons.0-1(active.0(x0), y1))) → MARK.0(cons.0-0(dbl.0(x0), dbls.1(y1)))
MARK.1(sel.0-1(y0, indx.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(indx.0-1(mark.1(x0), x1))))
MARK.1(sel.0-1(y0, indx.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(indx.0-0(mark.0(x0), x1))))
MARK.1(indx.1-0(y0, active.0(x1))) → ACTIVE.1(indx.0-0(mark.1(y0), x1))
MARK.1(sel.1-0(y0, cons.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(cons.0-1(x0, x1))))
MARK.1(sel.0-0(X1, X2)) → MARK.0(X1)
MARK.0(dbls.0(s.0(x0))) → ACTIVE.0(dbls.0(active.0(s.0(x0))))
MARK.1(sel.0-0(y0, dbl.1(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(dbl.0(mark.1(x0)))))
MARK.1(sel.0-1(dbls.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbls.0(mark.1(x0))), mark.1(y1)))
ACTIVE.1(sel.0-0(0., cons.1-1(X, Y))) → MARK.1(X)
MARK.0(dbl.0(from.0(x0))) → ACTIVE.0(dbl.0(active.0(from.0(x0))))
MARK.1(indx.0-1(dbls.0(x0), y1)) → ACTIVE.1(indx.0-1(active.0(dbls.0(mark.0(x0))), y1))
MARK.1(sel.0-0(y0, dbls.1(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(dbls.0(mark.1(x0)))))
MARK.0(dbl.0(dbl.1(x0))) → ACTIVE.0(dbl.0(active.0(dbl.0(mark.1(x0)))))
ACTIVE.0(from.1(X)) → MARK.0(cons.1-0(X, from.0(s.1(X))))
MARK.0(dbls.0(from.1(x0))) → ACTIVE.0(dbls.0(active.0(from.1(x0))))
MARK.1(sel.0-1(X1, X2)) → MARK.1(X2)
MARK.1(sel.0-1(from.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(from.1(x0)), mark.1(y1)))
MARK.1(indx.0-0(y0, mark.1(x1))) → ACTIVE.1(indx.0-1(mark.0(y0), x1))
MARK.0(dbl.0(x0)) → ACTIVE.0(dbl.0(x0))
MARK.1(sel.0-1(cons.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.1-1(x0, x1)), mark.1(y1)))
MARK.1(sel.0-1(y0, indx.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(indx.0-1(mark.0(x0), x1))))
MARK.1(sel.1-0(indx.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-1(mark.1(x0), x1)), mark.0(y1)))
MARK.1(indx.1-1(indx.0-0(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(indx.0-0(mark.0(x0), x1)), y1))
MARK.0(dbls.1(sel.1-1(x0, x1))) → ACTIVE.0(dbls.0(active.1(sel.0-0(mark.1(x0), mark.1(x1)))))
MARK.1(indx.1-0(x0, x1)) → ACTIVE.1(indx.1-0(x0, x1))
MARK.0(dbl.1(X)) → MARK.1(X)
ACTIVE.0(dbls.0(cons.0-0(active.1(x0), y1))) → MARK.0(cons.0-0(dbl.1(x0), dbls.0(y1)))
MARK.1(sel.1-0(sel.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.0(x0), mark.1(x1))), mark.0(y1)))
MARK.0(dbls.1(sel.1-0(x0, x1))) → ACTIVE.0(dbls.0(active.1(sel.0-0(mark.1(x0), mark.0(x1)))))
MARK.0(dbls.0(cons.1-1(x0, x1))) → ACTIVE.0(dbls.0(active.0(cons.1-1(x0, x1))))
MARK.1(sel.1-0(indx.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-0(mark.1(x0), x1)), mark.0(y1)))
MARK.1(sel.0-1(y0, indx.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(indx.0-0(mark.1(x0), x1))))
MARK.1(sel.1-1(sel.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.1(x0), mark.1(x1))), mark.1(y1)))
MARK.1(sel.1-1(sel.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.0(x0), mark.0(x1))), mark.1(y1)))
ACTIVE.1(sel.0-0(s.0(X), cons.1-1(Y, Z))) → MARK.1(sel.0-1(X, Z))
MARK.1(indx.0-0(cons.1-0(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.0(cons.1-0(x0, x1)), y1))
ACTIVE.1(indx.0-0(cons.1-1(X, Y), Z)) → MARK.0(cons.1-1(sel.1-0(X, Z), indx.1-0(Y, Z)))
MARK.1(sel.1-0(y0, cons.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(cons.1-1(x0, x1))))
MARK.0(dbl.0(cons.0-1(x0, x1))) → ACTIVE.0(dbl.0(active.0(cons.0-1(x0, x1))))
ACTIVE.0(dbls.0(cons.0-0(mark.1(x0), y1))) → MARK.0(cons.0-0(dbl.1(x0), dbls.0(y1)))
MARK.1(sel.0-1(y0, sel.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(sel.0-0(mark.0(x0), mark.0(x1)))))
ACTIVE.0(dbl.0(s.0(active.0(x0)))) → MARK.0(s.0(s.0(dbl.0(x0))))
MARK.0(dbl.0(dbls.0(x0))) → ACTIVE.0(dbl.0(active.0(dbls.0(mark.0(x0)))))
MARK.1(indx.0-1(cons.1-1(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.0(cons.1-1(x0, x1)), y1))
MARK.1(sel.1-1(y0, sel.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(sel.0-0(mark.1(x0), mark.1(x1)))))
MARK.1(sel.1-0(y0, cons.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(cons.0-0(x0, x1))))
ACTIVE.0(dbls.0(cons.0-0(mark.0(x0), y1))) → MARK.0(cons.0-0(dbl.0(x0), dbls.0(y1)))
MARK.1(sel.0-0(0., y1)) → ACTIVE.1(sel.0-0(active.0(0.), mark.0(y1)))
MARK.1(sel.0-0(y0, 0.)) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(0.)))
ACTIVE.1(sel.0-0(s.1(X), cons.1-1(Y, Z))) → MARK.1(sel.1-1(X, Z))
MARK.1(sel.0-1(cons.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.0-1(x0, x1)), mark.1(y1)))
MARK.0(dbls.1(indx.0-1(x0, x1))) → ACTIVE.0(dbls.0(active.1(indx.0-1(mark.0(x0), x1))))
MARK.0(dbl.1(sel.0-1(x0, x1))) → ACTIVE.0(dbl.0(active.1(sel.0-0(mark.0(x0), mark.1(x1)))))
MARK.1(indx.0-1(dbl.0(x0), y1)) → ACTIVE.1(indx.0-1(active.0(dbl.0(mark.0(x0))), y1))
MARK.1(sel.0-1(s.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(s.1(x0)), mark.1(y1)))
MARK.1(sel.1-1(indx.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-0(mark.1(x0), x1)), mark.1(y1)))
MARK.1(indx.1-0(indx.0-1(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(indx.0-1(mark.0(x0), x1)), y1))
MARK.1(sel.0-0(dbl.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbl.0(mark.0(x0))), mark.0(y1)))
MARK.1(indx.0-0(0., y1)) → ACTIVE.1(indx.0-0(active.0(0.), y1))
MARK.0(dbl.0(cons.1-1(x0, x1))) → ACTIVE.0(dbl.0(active.0(cons.1-1(x0, x1))))
MARK.1(indx.1-0(indx.0-0(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(indx.0-0(mark.0(x0), x1)), y1))
MARK.0(dbls.0(dbl.1(x0))) → ACTIVE.0(dbls.0(active.0(dbl.0(mark.1(x0)))))
MARK.1(indx.0-1(from.0(x0), y1)) → ACTIVE.1(indx.0-1(active.0(from.0(x0)), y1))
MARK.0(dbls.0(from.0(x0))) → ACTIVE.0(dbls.0(active.0(from.0(x0))))
MARK.1(indx.0-0(nil., y1)) → ACTIVE.1(indx.0-0(active.0(nil.), y1))
MARK.0(dbl.0(cons.1-0(x0, x1))) → ACTIVE.0(dbl.0(active.0(cons.1-0(x0, x1))))
MARK.1(indx.1-1(x0, x1)) → ACTIVE.1(indx.1-1(x0, x1))
MARK.0(dbl.1(sel.0-0(x0, x1))) → ACTIVE.0(dbl.0(active.1(sel.0-0(mark.0(x0), mark.0(x1)))))
ACTIVE.0(dbls.0(cons.1-0(y0, mark.0(x0)))) → MARK.0(cons.0-0(dbl.1(y0), dbls.0(x0)))
MARK.1(sel.0-1(cons.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.0-0(x0, x1)), mark.1(y1)))
MARK.1(indx.0-0(y0, active.1(x1))) → ACTIVE.1(indx.0-1(mark.0(y0), x1))
MARK.1(indx.1-1(X1, X2)) → MARK.1(X1)
MARK.1(sel.1-1(sel.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.1(x0), mark.0(x1))), mark.1(y1)))
MARK.1(sel.1-1(y0, indx.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(indx.0-1(mark.1(x0), x1))))
MARK.1(sel.0-1(y0, x1)) → ACTIVE.1(sel.0-1(mark.0(y0), x1))
MARK.0(dbls.1(indx.0-0(x0, x1))) → ACTIVE.0(dbls.0(active.1(indx.0-0(mark.0(x0), x1))))
MARK.1(indx.1-0(y0, mark.0(x1))) → ACTIVE.1(indx.0-0(mark.1(y0), x1))
MARK.1(sel.0-1(y0, sel.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(sel.0-0(mark.0(x0), mark.1(x1)))))
MARK.1(sel.1-0(indx.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-0(mark.0(x0), x1)), mark.0(y1)))
MARK.1(sel.0-0(X1, X2)) → MARK.0(X2)
MARK.1(sel.1-0(sel.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.0(x0), mark.0(x1))), mark.0(y1)))
MARK.0(from.0(X)) → ACTIVE.0(from.0(X))
MARK.1(sel.1-0(y0, from.1(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(from.1(x0))))
MARK.1(sel.0-0(y0, s.0(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(s.0(x0))))
MARK.0(from.1(X)) → ACTIVE.0(from.1(X))
MARK.0(dbl.1(indx.0-1(x0, x1))) → ACTIVE.0(dbl.0(active.1(indx.0-1(mark.0(x0), x1))))
MARK.1(sel.0-0(y0, s.1(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(s.1(x0))))
MARK.1(indx.1-0(indx.1-1(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(indx.0-1(mark.1(x0), x1)), y1))
MARK.1(sel.1-0(X1, X2)) → MARK.1(X1)
MARK.1(sel.0-0(y0, cons.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(cons.1-1(x0, x1))))
MARK.0(dbls.1(sel.0-1(x0, x1))) → ACTIVE.0(dbls.0(active.1(sel.0-0(mark.0(x0), mark.1(x1)))))
MARK.0(dbls.1(indx.1-1(x0, x1))) → ACTIVE.0(dbls.0(active.1(indx.0-1(mark.1(x0), x1))))
ACTIVE.1(sel.0-0(s.1(X), cons.0-0(Y, Z))) → MARK.1(sel.1-0(X, Z))
MARK.1(sel.1-0(y0, x1)) → ACTIVE.1(sel.0-0(mark.1(y0), x1))
MARK.1(indx.0-1(s.0(x0), y1)) → ACTIVE.1(indx.0-1(active.0(s.0(x0)), y1))
MARK.1(sel.1-0(X1, X2)) → MARK.0(X2)
MARK.1(indx.0-0(from.1(x0), y1)) → ACTIVE.1(indx.0-0(active.0(from.1(x0)), y1))
MARK.0(dbls.0(cons.0-1(x0, x1))) → ACTIVE.0(dbls.0(active.0(cons.0-1(x0, x1))))
MARK.1(sel.1-0(x0, y1)) → ACTIVE.1(sel.1-0(x0, mark.0(y1)))
MARK.1(sel.1-1(indx.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-0(mark.0(x0), x1)), mark.1(y1)))
MARK.1(sel.0-0(dbls.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbls.0(mark.0(x0))), mark.0(y1)))
MARK.1(sel.1-0(y0, s.1(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(s.1(x0))))
MARK.1(sel.1-1(y0, sel.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(sel.0-0(mark.0(x0), mark.0(x1)))))
ACTIVE.0(from.0(X)) → MARK.0(cons.0-0(X, from.0(s.0(X))))
MARK.0(dbl.1(sel.1-0(x0, x1))) → ACTIVE.0(dbl.0(active.1(sel.0-0(mark.1(x0), mark.0(x1)))))
MARK.1(indx.0-0(s.1(x0), y1)) → ACTIVE.1(indx.0-0(active.0(s.1(x0)), y1))
MARK.1(sel.1-1(sel.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.0(x0), mark.1(x1))), mark.1(y1)))
MARK.1(indx.0-0(cons.0-0(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.0(cons.0-0(x0, x1)), y1))
MARK.1(sel.0-0(cons.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.0-0(x0, x1)), mark.0(y1)))
MARK.1(sel.0-1(X1, X2)) → MARK.0(X1)
ACTIVE.1(sel.0-0(s.0(X), cons.0-0(Y, Z))) → MARK.1(sel.0-0(X, Z))
MARK.0(dbls.0(dbls.0(x0))) → ACTIVE.0(dbls.0(active.0(dbls.0(mark.0(x0)))))
MARK.1(indx.0-0(dbl.0(x0), y1)) → ACTIVE.1(indx.0-0(active.0(dbl.0(mark.0(x0))), y1))
MARK.1(sel.1-1(X1, X2)) → MARK.1(X1)
MARK.0(dbl.0(s.0(x0))) → ACTIVE.0(dbl.0(active.0(s.0(x0))))
MARK.1(sel.0-1(dbls.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbls.0(mark.0(x0))), mark.1(y1)))
MARK.1(sel.1-0(y0, from.0(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(from.0(x0))))
MARK.1(sel.0-1(nil., y1)) → ACTIVE.1(sel.0-0(active.0(nil.), mark.1(y1)))
MARK.1(indx.1-0(sel.0-0(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(sel.0-0(mark.0(x0), mark.0(x1))), y1))
MARK.1(sel.0-1(s.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(s.0(x0)), mark.1(y1)))
MARK.1(sel.0-0(dbl.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbl.0(mark.1(x0))), mark.0(y1)))
MARK.1(sel.0-0(y0, from.1(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(from.1(x0))))
MARK.1(indx.0-0(dbls.1(x0), y1)) → ACTIVE.1(indx.0-0(active.0(dbls.0(mark.1(x0))), y1))
ACTIVE.0(dbls.0(cons.1-0(y0, active.0(x0)))) → MARK.0(cons.0-0(dbl.1(y0), dbls.0(x0)))
MARK.0(dbls.0(x0)) → ACTIVE.0(dbls.0(x0))
MARK.1(indx.1-1(sel.1-1(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(sel.0-0(mark.1(x0), mark.1(x1))), y1))
ACTIVE.1(indx.0-0(cons.1-0(X, Y), Z)) → MARK.0(cons.1-1(sel.1-0(X, Z), indx.0-0(Y, Z)))
MARK.1(sel.0-0(from.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(from.0(x0)), mark.0(y1)))
ACTIVE.0(dbls.0(cons.0-0(y0, active.1(x0)))) → MARK.0(cons.0-0(dbl.0(y0), dbls.1(x0)))
ACTIVE.1(sel.0-0(s.0(X), cons.0-1(Y, Z))) → MARK.1(sel.0-1(X, Z))
MARK.0(dbls.0(X)) → MARK.0(X)
MARK.1(indx.0-0(cons.0-1(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.0(cons.0-1(x0, x1)), y1))
MARK.1(sel.0-0(y0, cons.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(cons.0-1(x0, x1))))
MARK.1(sel.1-0(y0, 0.)) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(0.)))
MARK.1(indx.0-1(from.1(x0), y1)) → ACTIVE.1(indx.0-1(active.0(from.1(x0)), y1))
MARK.1(sel.1-1(y0, indx.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(indx.0-1(mark.0(x0), x1))))
ACTIVE.1(sel.0-0(0., cons.0-0(X, Y))) → MARK.0(X)
MARK.1(indx.1-0(sel.1-1(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(sel.0-0(mark.1(x0), mark.1(x1))), y1))
ACTIVE.0(dbls.0(cons.0-0(y0, mark.0(x0)))) → MARK.0(cons.0-0(dbl.0(y0), dbls.0(x0)))
MARK.1(sel.1-0(sel.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.1(x0), mark.0(x1))), mark.0(y1)))
ACTIVE.1(sel.0-0(s.0(X), cons.1-0(Y, Z))) → MARK.1(sel.0-0(X, Z))
ACTIVE.1(indx.0-1(cons.0-1(X, Y), Z)) → MARK.0(cons.1-1(sel.0-1(X, Z), indx.1-1(Y, Z)))
MARK.1(indx.1-1(indx.1-1(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(indx.0-1(mark.1(x0), x1)), y1))
ACTIVE.1(indx.0-1(cons.1-0(X, Y), Z)) → MARK.0(cons.1-1(sel.1-1(X, Z), indx.0-1(Y, Z)))
MARK.0(dbls.0(dbls.1(x0))) → ACTIVE.0(dbls.0(active.0(dbls.0(mark.1(x0)))))
MARK.0(dbls.0(s.1(x0))) → ACTIVE.0(dbls.0(active.0(s.1(x0))))
MARK.1(sel.0-0(dbls.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbls.0(mark.1(x0))), mark.0(y1)))
MARK.1(indx.0-1(dbls.1(x0), y1)) → ACTIVE.1(indx.0-1(active.0(dbls.0(mark.1(x0))), y1))
MARK.0(dbl.0(dbl.0(x0))) → ACTIVE.0(dbl.0(active.0(dbl.0(mark.0(x0)))))
ACTIVE.1(sel.0-0(s.1(X), cons.0-1(Y, Z))) → MARK.1(sel.1-1(X, Z))
MARK.1(sel.0-0(s.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(s.1(x0)), mark.0(y1)))
MARK.1(sel.0-1(x0, y1)) → ACTIVE.1(sel.0-0(x0, mark.1(y1)))
MARK.1(sel.1-1(y0, sel.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(sel.0-0(mark.1(x0), mark.0(x1)))))
MARK.1(sel.0-0(y0, cons.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(cons.1-0(x0, x1))))
MARK.1(indx.1-0(y0, mark.1(x1))) → ACTIVE.1(indx.0-1(mark.1(y0), x1))
MARK.0(dbls.0(dbl.0(x0))) → ACTIVE.0(dbls.0(active.0(dbl.0(mark.0(x0)))))
MARK.1(indx.0-0(s.0(x0), y1)) → ACTIVE.1(indx.0-0(active.0(s.0(x0)), y1))
MARK.1(sel.1-1(x0, y1)) → ACTIVE.1(sel.1-0(x0, mark.1(y1)))
MARK.1(sel.1-0(y0, dbls.1(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(dbls.0(mark.1(x0)))))
MARK.1(sel.1-1(y0, sel.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(sel.0-0(mark.0(x0), mark.1(x1)))))
MARK.0(dbls.1(x0)) → ACTIVE.0(dbls.1(x0))
MARK.1(indx.0-1(nil., y1)) → ACTIVE.1(indx.0-1(active.0(nil.), y1))
MARK.1(sel.1-1(X1, X2)) → MARK.1(X2)
MARK.1(sel.0-1(from.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(from.0(x0)), mark.1(y1)))
ACTIVE.0(dbl.0(s.0(active.1(x0)))) → MARK.0(s.0(s.0(dbl.1(x0))))
MARK.1(sel.0-0(y0, from.0(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(from.0(x0))))
MARK.1(sel.1-1(y0, indx.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(indx.0-0(mark.1(x0), x1))))
ACTIVE.0(dbls.0(cons.0-1(active.1(x0), y1))) → MARK.0(cons.0-0(dbl.1(x0), dbls.1(y1)))
MARK.1(sel.1-1(y0, x1)) → ACTIVE.1(sel.0-1(mark.1(y0), x1))
MARK.1(indx.1-0(X1, X2)) → MARK.1(X1)
MARK.0(dbls.1(sel.0-0(x0, x1))) → ACTIVE.0(dbls.0(active.1(sel.0-0(mark.0(x0), mark.0(x1)))))
ACTIVE.1(indx.0-0(cons.0-0(X, Y), Z)) → MARK.0(cons.1-1(sel.0-0(X, Z), indx.0-0(Y, Z)))
MARK.1(indx.0-1(cons.0-0(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.0(cons.0-0(x0, x1)), y1))
MARK.1(indx.1-1(sel.1-0(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(sel.0-0(mark.1(x0), mark.0(x1))), y1))
MARK.1(sel.0-1(0., y1)) → ACTIVE.1(sel.0-0(active.0(0.), mark.1(y1)))
MARK.1(sel.1-0(indx.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-1(mark.0(x0), x1)), mark.0(y1)))
MARK.1(sel.0-0(y0, cons.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(cons.0-0(x0, x1))))
MARK.1(sel.0-0(x0, y1)) → ACTIVE.1(sel.0-0(x0, mark.0(y1)))
MARK.1(indx.1-1(sel.0-0(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(sel.0-0(mark.0(x0), mark.0(x1))), y1))
MARK.1(indx.0-1(0., y1)) → ACTIVE.1(indx.0-1(active.0(0.), y1))
MARK.1(sel.0-1(y0, sel.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(sel.0-0(mark.1(x0), mark.1(x1)))))
MARK.1(indx.1-1(indx.1-0(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(indx.0-0(mark.1(x0), x1)), y1))
MARK.1(indx.0-0(from.0(x0), y1)) → ACTIVE.1(indx.0-0(active.0(from.0(x0)), y1))
MARK.0(dbl.1(indx.1-0(x0, x1))) → ACTIVE.0(dbl.0(active.1(indx.0-0(mark.1(x0), x1))))
ACTIVE.0(dbl.0(s.0(mark.1(x0)))) → MARK.0(s.0(s.0(dbl.1(x0))))
MARK.1(sel.0-1(dbl.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbl.0(mark.0(x0))), mark.1(y1)))
MARK.1(sel.0-1(cons.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.1-0(x0, x1)), mark.1(y1)))
MARK.1(sel.0-0(cons.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.1-1(x0, x1)), mark.0(y1)))
MARK.0(dbls.0(cons.1-0(x0, x1))) → ACTIVE.0(dbls.0(active.0(cons.1-0(x0, x1))))
MARK.1(sel.1-1(y0, indx.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(indx.0-0(mark.0(x0), x1))))
MARK.0(dbls.1(indx.1-0(x0, x1))) → ACTIVE.0(dbls.0(active.1(indx.0-0(mark.1(x0), x1))))
MARK.0(dbl.1(indx.1-1(x0, x1))) → ACTIVE.0(dbl.0(active.1(indx.0-1(mark.1(x0), x1))))
MARK.0(dbl.0(cons.0-0(x0, x1))) → ACTIVE.0(dbl.0(active.0(cons.0-0(x0, x1))))
ACTIVE.0(dbls.0(cons.0-1(mark.1(x0), y1))) → MARK.0(cons.0-0(dbl.1(x0), dbls.1(y1)))
MARK.1(sel.1-1(indx.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-1(mark.1(x0), x1)), mark.1(y1)))
MARK.1(sel.0-0(cons.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.1-0(x0, x1)), mark.0(y1)))
ACTIVE.0(dbls.0(cons.0-0(y0, mark.1(x0)))) → MARK.0(cons.0-0(dbl.0(y0), dbls.1(x0)))
MARK.1(indx.1-0(sel.0-1(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(sel.0-0(mark.0(x0), mark.1(x1))), y1))
MARK.1(sel.1-0(y0, dbl.1(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(dbl.0(mark.1(x0)))))
MARK.1(indx.1-1(sel.0-1(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(sel.0-0(mark.0(x0), mark.1(x1))), y1))
ACTIVE.0(dbl.0(s.0(mark.0(x0)))) → MARK.0(s.0(s.0(dbl.0(x0))))
ACTIVE.0(dbls.0(cons.0-0(active.0(x0), y1))) → MARK.0(cons.0-0(dbl.0(x0), dbls.0(y1)))
MARK.1(sel.1-0(y0, dbl.0(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(dbl.0(mark.0(x0)))))
MARK.0(dbl.0(dbls.1(x0))) → ACTIVE.0(dbl.0(active.0(dbls.0(mark.1(x0)))))
MARK.1(sel.0-0(s.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(s.0(x0)), mark.0(y1)))
MARK.1(indx.0-0(y0, mark.0(x1))) → ACTIVE.1(indx.0-0(mark.0(y0), x1))
MARK.1(indx.0-1(cons.1-0(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.0(cons.1-0(x0, x1)), y1))
MARK.1(sel.1-0(y0, nil.)) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(nil.)))
ACTIVE.1(indx.0-1(cons.1-1(X, Y), Z)) → MARK.0(cons.1-1(sel.1-1(X, Z), indx.1-1(Y, Z)))
ACTIVE.0(dbls.0(cons.0-1(mark.0(x0), y1))) → MARK.0(cons.0-0(dbl.0(x0), dbls.1(y1)))
MARK.0(dbls.0(cons.0-0(x0, x1))) → ACTIVE.0(dbls.0(active.0(cons.0-0(x0, x1))))
MARK.1(sel.0-0(y0, nil.)) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(nil.)))
MARK.1(sel.0-0(nil., y1)) → ACTIVE.1(sel.0-0(active.0(nil.), mark.0(y1)))
ACTIVE.1(sel.0-0(s.1(X), cons.1-0(Y, Z))) → MARK.1(sel.1-0(X, Z))
MARK.1(sel.0-1(dbl.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbl.0(mark.1(x0))), mark.1(y1)))
MARK.1(indx.1-1(indx.0-1(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(indx.0-1(mark.0(x0), x1)), y1))
MARK.1(sel.1-0(y0, s.0(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(s.0(x0))))
MARK.1(indx.0-0(dbls.0(x0), y1)) → ACTIVE.1(indx.0-0(active.0(dbls.0(mark.0(x0))), y1))
MARK.1(sel.0-0(y0, dbl.0(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(dbl.0(mark.0(x0)))))
MARK.1(indx.0-1(x0, x1)) → ACTIVE.1(indx.0-1(x0, x1))
MARK.1(indx.1-0(y0, active.1(x1))) → ACTIVE.1(indx.0-1(mark.1(y0), x1))
ACTIVE.1(sel.0-0(0., cons.0-1(X, Y))) → MARK.0(X)
ACTIVE.1(indx.0-1(cons.0-0(X, Y), Z)) → MARK.0(cons.1-1(sel.0-1(X, Z), indx.0-1(Y, Z)))
MARK.1(indx.0-0(cons.1-1(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.0(cons.1-1(x0, x1)), y1))
MARK.1(indx.0-0(y0, active.0(x1))) → ACTIVE.1(indx.0-0(mark.0(y0), x1))
MARK.1(sel.1-1(indx.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-1(mark.0(x0), x1)), mark.1(y1)))
MARK.1(sel.1-0(y0, cons.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(cons.1-0(x0, x1))))
MARK.1(indx.0-0(dbl.1(x0), y1)) → ACTIVE.1(indx.0-0(active.0(dbl.0(mark.1(x0))), y1))
ACTIVE.1(indx.0-0(cons.0-1(X, Y), Z)) → MARK.0(cons.1-1(sel.0-0(X, Z), indx.1-0(Y, Z)))
MARK.0(dbl.1(x0)) → ACTIVE.0(dbl.1(x0))

The TRS R consists of the following rules:

from.0(active.0(X)) → from.0(X)
active.1(sel.0-0(0., cons.0-0(X, Y))) → mark.0(X)
cons.0-1(active.0(X1), X2) → cons.0-1(X1, X2)
active.0(dbl.0(0.)) → mark.0(0.)
indx.0-0(X1, active.1(X2)) → indx.0-1(X1, X2)
active.1(indx.0-0(cons.1-1(X, Y), Z)) → mark.0(cons.1-1(sel.1-0(X, Z), indx.1-0(Y, Z)))
sel.0-1(active.0(X1), X2) → sel.0-1(X1, X2)
active.1(sel.0-0(s.1(X), cons.1-0(Y, Z))) → mark.1(sel.1-0(X, Z))
cons.0-0(active.0(X1), X2) → cons.0-0(X1, X2)
dbls.0(active.1(X)) → dbls.1(X)
indx.1-0(X1, active.1(X2)) → indx.1-1(X1, X2)
active.1(indx.0-0(cons.0-1(X, Y), Z)) → mark.0(cons.1-1(sel.0-0(X, Z), indx.1-0(Y, Z)))
active.0(dbls.0(cons.1-1(X, Y))) → mark.0(cons.0-0(dbl.1(X), dbls.1(Y)))
dbl.0(active.0(X)) → dbl.0(X)
active.0(from.1(X)) → mark.0(cons.1-0(X, from.0(s.1(X))))
active.1(sel.0-0(0., cons.0-1(X, Y))) → mark.0(X)
sel.0-0(mark.1(X1), X2) → sel.1-0(X1, X2)
indx.0-0(active.0(X1), X2) → indx.0-0(X1, X2)
mark.0(s.1(X)) → active.0(s.1(X))
cons.0-0(X1, mark.0(X2)) → cons.0-0(X1, X2)
dbl.0(mark.1(X)) → dbl.1(X)
indx.0-1(active.1(X1), X2) → indx.1-1(X1, X2)
mark.0(s.0(X)) → active.0(s.0(X))
mark.1(sel.1-0(X1, X2)) → active.1(sel.0-0(mark.1(X1), mark.0(X2)))
mark.0(cons.0-1(X1, X2)) → active.0(cons.0-1(X1, X2))
dbls.0(mark.1(X)) → dbls.1(X)
active.1(sel.0-0(0., cons.1-1(X, Y))) → mark.1(X)
active.1(indx.0-1(cons.0-0(X, Y), Z)) → mark.0(cons.1-1(sel.0-1(X, Z), indx.0-1(Y, Z)))
active.0(dbls.0(cons.0-0(X, Y))) → mark.0(cons.0-0(dbl.0(X), dbls.0(Y)))
mark.0(cons.1-1(X1, X2)) → active.0(cons.1-1(X1, X2))
sel.0-1(mark.1(X1), X2) → sel.1-1(X1, X2)
cons.0-0(X1, active.0(X2)) → cons.0-0(X1, X2)
cons.1-0(X1, mark.1(X2)) → cons.1-1(X1, X2)
sel.0-1(mark.0(X1), X2) → sel.0-1(X1, X2)
indx.0-1(active.0(X1), X2) → indx.0-1(X1, X2)
sel.0-0(active.0(X1), X2) → sel.0-0(X1, X2)
dbl.0(mark.0(X)) → dbl.0(X)
cons.0-1(mark.1(X1), X2) → cons.1-1(X1, X2)
mark.0(nil.) → active.0(nil.)
indx.0-0(X1, mark.0(X2)) → indx.0-0(X1, X2)
mark.1(sel.1-1(X1, X2)) → active.1(sel.0-0(mark.1(X1), mark.1(X2)))
indx.0-0(mark.0(X1), X2) → indx.0-0(X1, X2)
mark.1(indx.0-0(X1, X2)) → active.1(indx.0-0(mark.0(X1), X2))
active.0(dbls.0(cons.1-0(X, Y))) → mark.0(cons.0-0(dbl.1(X), dbls.0(Y)))
sel.0-0(mark.0(X1), X2) → sel.0-0(X1, X2)
indx.0-0(active.1(X1), X2) → indx.1-0(X1, X2)
active.1(indx.0-0(nil., X)) → mark.0(nil.)
indx.1-0(X1, mark.1(X2)) → indx.1-1(X1, X2)
indx.0-0(mark.1(X1), X2) → indx.1-0(X1, X2)
mark.1(indx.0-1(X1, X2)) → active.1(indx.0-1(mark.0(X1), X2))
mark.1(indx.1-0(X1, X2)) → active.1(indx.0-0(mark.1(X1), X2))
active.1(sel.0-0(s.1(X), cons.0-0(Y, Z))) → mark.1(sel.1-0(X, Z))
active.1(sel.0-0(s.0(X), cons.0-1(Y, Z))) → mark.1(sel.0-1(X, Z))
active.1(indx.0-0(cons.0-0(X, Y), Z)) → mark.0(cons.1-1(sel.0-0(X, Z), indx.0-0(Y, Z)))
mark.0(dbls.1(X)) → active.0(dbls.0(mark.1(X)))
mark.1(sel.0-1(X1, X2)) → active.1(sel.0-0(mark.0(X1), mark.1(X2)))
active.1(indx.0-1(cons.1-1(X, Y), Z)) → mark.0(cons.1-1(sel.1-1(X, Z), indx.1-1(Y, Z)))
indx.0-0(X1, mark.1(X2)) → indx.0-1(X1, X2)
active.0(dbls.0(nil.)) → mark.0(nil.)
sel.0-1(active.1(X1), X2) → sel.1-1(X1, X2)
cons.1-0(X1, active.0(X2)) → cons.1-0(X1, X2)
cons.0-0(X1, active.1(X2)) → cons.0-1(X1, X2)
sel.1-0(X1, active.1(X2)) → sel.1-1(X1, X2)
cons.0-0(X1, mark.1(X2)) → cons.0-1(X1, X2)
mark.1(indx.1-1(X1, X2)) → active.1(indx.0-1(mark.1(X1), X2))
cons.1-0(X1, active.1(X2)) → cons.1-1(X1, X2)
from.0(mark.0(X)) → from.0(X)
mark.0(dbl.1(X)) → active.0(dbl.0(mark.1(X)))
mark.0(from.1(X)) → active.0(from.1(X))
indx.1-0(X1, mark.0(X2)) → indx.1-0(X1, X2)
active.0(dbls.0(cons.0-1(X, Y))) → mark.0(cons.0-0(dbl.0(X), dbls.1(Y)))
mark.0(dbls.0(X)) → active.0(dbls.0(mark.0(X)))
active.1(sel.0-0(s.1(X), cons.0-1(Y, Z))) → mark.1(sel.1-1(X, Z))
dbl.0(active.1(X)) → dbl.1(X)
cons.0-1(mark.0(X1), X2) → cons.0-1(X1, X2)
sel.0-0(X1, mark.0(X2)) → sel.0-0(X1, X2)
mark.0(0.) → active.0(0.)
active.0(dbl.0(s.1(X))) → mark.0(s.0(s.0(dbl.1(X))))
active.1(sel.0-0(0., cons.1-0(X, Y))) → mark.1(X)
sel.0-0(X1, mark.1(X2)) → sel.0-1(X1, X2)
cons.0-0(active.1(X1), X2) → cons.1-0(X1, X2)
indx.1-0(X1, active.0(X2)) → indx.1-0(X1, X2)
dbls.0(active.0(X)) → dbls.0(X)
active.0(from.0(X)) → mark.0(cons.0-0(X, from.0(s.0(X))))
active.1(sel.0-0(s.1(X), cons.1-1(Y, Z))) → mark.1(sel.1-1(X, Z))
cons.1-0(X1, mark.0(X2)) → cons.1-0(X1, X2)
indx.0-1(mark.0(X1), X2) → indx.0-1(X1, X2)
mark.0(cons.1-0(X1, X2)) → active.0(cons.1-0(X1, X2))
active.1(sel.0-0(s.0(X), cons.1-1(Y, Z))) → mark.1(sel.0-1(X, Z))
sel.1-0(X1, active.0(X2)) → sel.1-0(X1, X2)
indx.0-1(mark.1(X1), X2) → indx.1-1(X1, X2)
sel.0-0(X1, active.0(X2)) → sel.0-0(X1, X2)
active.1(indx.0-1(cons.0-1(X, Y), Z)) → mark.0(cons.1-1(sel.0-1(X, Z), indx.1-1(Y, Z)))
s.0(active.0(X)) → s.0(X)
cons.0-1(active.1(X1), X2) → cons.1-1(X1, X2)
sel.0-0(active.1(X1), X2) → sel.1-0(X1, X2)
active.1(sel.0-0(s.0(X), cons.1-0(Y, Z))) → mark.1(sel.0-0(X, Z))
s.0(mark.1(X)) → s.1(X)
mark.0(dbl.0(X)) → active.0(dbl.0(mark.0(X)))
sel.1-0(X1, mark.0(X2)) → sel.1-0(X1, X2)
indx.0-0(X1, active.0(X2)) → indx.0-0(X1, X2)
active.1(indx.0-1(nil., X)) → mark.0(nil.)
sel.0-0(X1, active.1(X2)) → sel.0-1(X1, X2)
mark.0(cons.0-0(X1, X2)) → active.0(cons.0-0(X1, X2))
mark.0(from.0(X)) → active.0(from.0(X))
from.0(active.1(X)) → from.1(X)
s.0(active.1(X)) → s.1(X)
active.0(dbl.0(s.0(X))) → mark.0(s.0(s.0(dbl.0(X))))
from.0(mark.1(X)) → from.1(X)
cons.0-0(mark.1(X1), X2) → cons.1-0(X1, X2)
sel.1-0(X1, mark.1(X2)) → sel.1-1(X1, X2)
active.1(indx.0-1(cons.1-0(X, Y), Z)) → mark.0(cons.1-1(sel.1-1(X, Z), indx.0-1(Y, Z)))
active.1(indx.0-0(cons.1-0(X, Y), Z)) → mark.0(cons.1-1(sel.1-0(X, Z), indx.0-0(Y, Z)))
s.0(mark.0(X)) → s.0(X)
mark.1(sel.0-0(X1, X2)) → active.1(sel.0-0(mark.0(X1), mark.0(X2)))
dbls.0(mark.0(X)) → dbls.0(X)
active.1(sel.0-0(s.0(X), cons.0-0(Y, Z))) → mark.1(sel.0-0(X, Z))
cons.0-0(mark.0(X1), X2) → cons.0-0(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 19 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Narrowing
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ SemLabProof
                                                                          ↳ QDP
                                                                            ↳ DependencyGraphProof
QDP
                                                                                ↳ QDPOrderProof
                                                                        ↳ SemLabProof2

Q DP problem:
The TRS P consists of the following rules:

ACTIVE.1(sel.0-0(0., cons.1-0(X, Y))) → MARK.1(X)
MARK.1(sel.0-0(y0, x1)) → ACTIVE.1(sel.0-0(mark.0(y0), x1))
MARK.1(sel.1-0(sel.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.1(x0), mark.1(x1))), mark.0(y1)))
MARK.0(dbl.0(X)) → MARK.0(X)
MARK.1(indx.0-0(x0, x1)) → ACTIVE.1(indx.0-0(x0, x1))
MARK.1(sel.0-0(from.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(from.1(x0)), mark.0(y1)))
MARK.1(indx.0-0(X1, X2)) → MARK.0(X1)
ACTIVE.0(dbls.0(cons.0-0(y0, active.0(x0)))) → MARK.0(cons.0-0(dbl.0(y0), dbls.0(x0)))
MARK.1(indx.0-1(dbl.1(x0), y1)) → ACTIVE.1(indx.0-1(active.0(dbl.0(mark.1(x0))), y1))
MARK.1(indx.0-1(cons.0-1(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.0(cons.0-1(x0, x1)), y1))
MARK.1(indx.0-1(s.1(x0), y1)) → ACTIVE.1(indx.0-1(active.0(s.1(x0)), y1))
MARK.0(dbl.0(s.1(x0))) → ACTIVE.0(dbl.0(active.0(s.1(x0))))
MARK.1(sel.0-0(y0, dbls.0(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(dbls.0(mark.0(x0)))))
MARK.1(sel.1-0(y0, dbls.0(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(dbls.0(mark.0(x0)))))
MARK.0(dbls.1(X)) → MARK.1(X)
MARK.1(sel.0-0(cons.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.0-1(x0, x1)), mark.0(y1)))
MARK.1(indx.1-0(indx.1-0(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(indx.0-0(mark.1(x0), x1)), y1))
MARK.1(indx.1-0(sel.1-0(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(sel.0-0(mark.1(x0), mark.0(x1))), y1))
MARK.1(sel.0-1(y0, sel.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(sel.0-0(mark.1(x0), mark.0(x1)))))
MARK.1(indx.0-1(X1, X2)) → MARK.0(X1)
MARK.0(dbl.1(indx.0-0(x0, x1))) → ACTIVE.0(dbl.0(active.1(indx.0-0(mark.0(x0), x1))))
MARK.0(dbl.0(from.1(x0))) → ACTIVE.0(dbl.0(active.0(from.1(x0))))
MARK.0(dbl.1(sel.1-1(x0, x1))) → ACTIVE.0(dbl.0(active.1(sel.0-0(mark.1(x0), mark.1(x1)))))
ACTIVE.0(dbls.0(cons.0-1(active.0(x0), y1))) → MARK.0(cons.0-0(dbl.0(x0), dbls.1(y1)))
MARK.1(sel.0-1(y0, indx.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(indx.0-0(mark.0(x0), x1))))
MARK.1(sel.0-1(y0, indx.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(indx.0-1(mark.1(x0), x1))))
MARK.1(indx.1-0(y0, active.0(x1))) → ACTIVE.1(indx.0-0(mark.1(y0), x1))
MARK.1(sel.1-0(y0, cons.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(cons.0-1(x0, x1))))
MARK.1(sel.0-0(X1, X2)) → MARK.0(X1)
MARK.0(dbls.0(s.0(x0))) → ACTIVE.0(dbls.0(active.0(s.0(x0))))
MARK.1(sel.0-0(y0, dbl.1(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(dbl.0(mark.1(x0)))))
MARK.1(sel.0-1(dbls.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbls.0(mark.1(x0))), mark.1(y1)))
ACTIVE.1(sel.0-0(0., cons.1-1(X, Y))) → MARK.1(X)
MARK.0(dbl.0(from.0(x0))) → ACTIVE.0(dbl.0(active.0(from.0(x0))))
MARK.1(indx.0-1(dbls.0(x0), y1)) → ACTIVE.1(indx.0-1(active.0(dbls.0(mark.0(x0))), y1))
MARK.1(sel.0-0(y0, dbls.1(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(dbls.0(mark.1(x0)))))
MARK.0(dbl.0(dbl.1(x0))) → ACTIVE.0(dbl.0(active.0(dbl.0(mark.1(x0)))))
MARK.0(dbls.0(from.1(x0))) → ACTIVE.0(dbls.0(active.0(from.1(x0))))
MARK.1(sel.0-1(X1, X2)) → MARK.1(X2)
MARK.1(indx.0-0(y0, mark.1(x1))) → ACTIVE.1(indx.0-1(mark.0(y0), x1))
MARK.1(sel.0-1(from.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(from.1(x0)), mark.1(y1)))
MARK.0(dbl.0(x0)) → ACTIVE.0(dbl.0(x0))
MARK.1(sel.0-1(cons.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.1-1(x0, x1)), mark.1(y1)))
MARK.1(sel.0-1(y0, indx.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(indx.0-1(mark.0(x0), x1))))
MARK.1(sel.1-0(indx.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-1(mark.1(x0), x1)), mark.0(y1)))
MARK.1(indx.1-1(indx.0-0(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(indx.0-0(mark.0(x0), x1)), y1))
MARK.0(dbls.1(sel.1-1(x0, x1))) → ACTIVE.0(dbls.0(active.1(sel.0-0(mark.1(x0), mark.1(x1)))))
MARK.1(indx.1-0(x0, x1)) → ACTIVE.1(indx.1-0(x0, x1))
MARK.0(dbl.1(X)) → MARK.1(X)
ACTIVE.0(dbls.0(cons.0-0(active.1(x0), y1))) → MARK.0(cons.0-0(dbl.1(x0), dbls.0(y1)))
MARK.1(sel.1-0(sel.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.0(x0), mark.1(x1))), mark.0(y1)))
MARK.0(dbls.1(sel.1-0(x0, x1))) → ACTIVE.0(dbls.0(active.1(sel.0-0(mark.1(x0), mark.0(x1)))))
MARK.0(dbls.0(cons.1-1(x0, x1))) → ACTIVE.0(dbls.0(active.0(cons.1-1(x0, x1))))
MARK.1(sel.1-0(indx.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-0(mark.1(x0), x1)), mark.0(y1)))
MARK.1(sel.1-1(sel.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.1(x0), mark.1(x1))), mark.1(y1)))
MARK.1(sel.0-1(y0, indx.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(indx.0-0(mark.1(x0), x1))))
MARK.1(sel.1-1(sel.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.0(x0), mark.0(x1))), mark.1(y1)))
MARK.1(indx.0-0(cons.1-0(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.0(cons.1-0(x0, x1)), y1))
ACTIVE.1(sel.0-0(s.0(X), cons.1-1(Y, Z))) → MARK.1(sel.0-1(X, Z))
MARK.1(sel.1-0(y0, cons.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(cons.1-1(x0, x1))))
MARK.0(dbl.0(cons.0-1(x0, x1))) → ACTIVE.0(dbl.0(active.0(cons.0-1(x0, x1))))
ACTIVE.0(dbls.0(cons.0-0(mark.1(x0), y1))) → MARK.0(cons.0-0(dbl.1(x0), dbls.0(y1)))
MARK.1(sel.0-1(y0, sel.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(sel.0-0(mark.0(x0), mark.0(x1)))))
ACTIVE.0(dbl.0(s.0(active.0(x0)))) → MARK.0(s.0(s.0(dbl.0(x0))))
MARK.0(dbl.0(dbls.0(x0))) → ACTIVE.0(dbl.0(active.0(dbls.0(mark.0(x0)))))
MARK.1(indx.0-1(cons.1-1(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.0(cons.1-1(x0, x1)), y1))
MARK.1(sel.1-1(y0, sel.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(sel.0-0(mark.1(x0), mark.1(x1)))))
MARK.1(sel.1-0(y0, cons.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(cons.0-0(x0, x1))))
ACTIVE.0(dbls.0(cons.0-0(mark.0(x0), y1))) → MARK.0(cons.0-0(dbl.0(x0), dbls.0(y1)))
MARK.1(sel.0-0(0., y1)) → ACTIVE.1(sel.0-0(active.0(0.), mark.0(y1)))
MARK.1(sel.0-0(y0, 0.)) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(0.)))
ACTIVE.1(sel.0-0(s.1(X), cons.1-1(Y, Z))) → MARK.1(sel.1-1(X, Z))
MARK.1(sel.0-1(cons.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.0-1(x0, x1)), mark.1(y1)))
MARK.0(dbl.1(sel.0-1(x0, x1))) → ACTIVE.0(dbl.0(active.1(sel.0-0(mark.0(x0), mark.1(x1)))))
MARK.0(dbls.1(indx.0-1(x0, x1))) → ACTIVE.0(dbls.0(active.1(indx.0-1(mark.0(x0), x1))))
MARK.1(indx.0-1(dbl.0(x0), y1)) → ACTIVE.1(indx.0-1(active.0(dbl.0(mark.0(x0))), y1))
MARK.1(sel.0-1(s.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(s.1(x0)), mark.1(y1)))
MARK.1(sel.1-1(indx.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-0(mark.1(x0), x1)), mark.1(y1)))
MARK.1(indx.1-0(indx.0-1(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(indx.0-1(mark.0(x0), x1)), y1))
MARK.1(indx.0-0(0., y1)) → ACTIVE.1(indx.0-0(active.0(0.), y1))
MARK.1(sel.0-0(dbl.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbl.0(mark.0(x0))), mark.0(y1)))
MARK.0(dbl.0(cons.1-1(x0, x1))) → ACTIVE.0(dbl.0(active.0(cons.1-1(x0, x1))))
MARK.1(indx.1-0(indx.0-0(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(indx.0-0(mark.0(x0), x1)), y1))
MARK.1(indx.0-1(from.0(x0), y1)) → ACTIVE.1(indx.0-1(active.0(from.0(x0)), y1))
MARK.0(dbls.0(dbl.1(x0))) → ACTIVE.0(dbls.0(active.0(dbl.0(mark.1(x0)))))
MARK.1(indx.0-0(nil., y1)) → ACTIVE.1(indx.0-0(active.0(nil.), y1))
MARK.0(dbls.0(from.0(x0))) → ACTIVE.0(dbls.0(active.0(from.0(x0))))
MARK.0(dbl.0(cons.1-0(x0, x1))) → ACTIVE.0(dbl.0(active.0(cons.1-0(x0, x1))))
MARK.0(dbl.1(sel.0-0(x0, x1))) → ACTIVE.0(dbl.0(active.1(sel.0-0(mark.0(x0), mark.0(x1)))))
ACTIVE.0(dbls.0(cons.1-0(y0, mark.0(x0)))) → MARK.0(cons.0-0(dbl.1(y0), dbls.0(x0)))
MARK.1(sel.0-1(cons.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.0-0(x0, x1)), mark.1(y1)))
MARK.1(indx.0-0(y0, active.1(x1))) → ACTIVE.1(indx.0-1(mark.0(y0), x1))
MARK.1(indx.1-1(X1, X2)) → MARK.1(X1)
MARK.1(sel.1-1(sel.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.1(x0), mark.0(x1))), mark.1(y1)))
MARK.1(sel.1-1(y0, indx.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(indx.0-1(mark.1(x0), x1))))
MARK.1(sel.0-1(y0, x1)) → ACTIVE.1(sel.0-1(mark.0(y0), x1))
MARK.0(dbls.1(indx.0-0(x0, x1))) → ACTIVE.0(dbls.0(active.1(indx.0-0(mark.0(x0), x1))))
MARK.1(indx.1-0(y0, mark.0(x1))) → ACTIVE.1(indx.0-0(mark.1(y0), x1))
MARK.1(sel.1-0(indx.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-0(mark.0(x0), x1)), mark.0(y1)))
MARK.1(sel.0-1(y0, sel.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(sel.0-0(mark.0(x0), mark.1(x1)))))
MARK.1(sel.1-0(sel.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.0(x0), mark.0(x1))), mark.0(y1)))
MARK.1(sel.0-0(X1, X2)) → MARK.0(X2)
MARK.0(from.0(X)) → ACTIVE.0(from.0(X))
MARK.1(sel.1-0(y0, from.1(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(from.1(x0))))
MARK.1(sel.0-0(y0, s.0(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(s.0(x0))))
MARK.0(dbl.1(indx.0-1(x0, x1))) → ACTIVE.0(dbl.0(active.1(indx.0-1(mark.0(x0), x1))))
MARK.1(sel.0-0(y0, s.1(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(s.1(x0))))
MARK.1(indx.1-0(indx.1-1(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(indx.0-1(mark.1(x0), x1)), y1))
MARK.1(sel.1-0(X1, X2)) → MARK.1(X1)
MARK.1(sel.0-0(y0, cons.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(cons.1-1(x0, x1))))
MARK.0(dbls.1(sel.0-1(x0, x1))) → ACTIVE.0(dbls.0(active.1(sel.0-0(mark.0(x0), mark.1(x1)))))
MARK.0(dbls.1(indx.1-1(x0, x1))) → ACTIVE.0(dbls.0(active.1(indx.0-1(mark.1(x0), x1))))
ACTIVE.1(sel.0-0(s.1(X), cons.0-0(Y, Z))) → MARK.1(sel.1-0(X, Z))
MARK.1(sel.1-0(y0, x1)) → ACTIVE.1(sel.0-0(mark.1(y0), x1))
MARK.1(indx.0-1(s.0(x0), y1)) → ACTIVE.1(indx.0-1(active.0(s.0(x0)), y1))
MARK.1(sel.1-0(X1, X2)) → MARK.0(X2)
MARK.1(indx.0-0(from.1(x0), y1)) → ACTIVE.1(indx.0-0(active.0(from.1(x0)), y1))
MARK.0(dbls.0(cons.0-1(x0, x1))) → ACTIVE.0(dbls.0(active.0(cons.0-1(x0, x1))))
MARK.1(sel.1-1(indx.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-0(mark.0(x0), x1)), mark.1(y1)))
MARK.1(sel.1-0(x0, y1)) → ACTIVE.1(sel.1-0(x0, mark.0(y1)))
MARK.1(sel.0-0(dbls.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbls.0(mark.0(x0))), mark.0(y1)))
MARK.1(sel.1-1(y0, sel.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(sel.0-0(mark.0(x0), mark.0(x1)))))
MARK.1(sel.1-0(y0, s.1(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(s.1(x0))))
ACTIVE.0(from.0(X)) → MARK.0(cons.0-0(X, from.0(s.0(X))))
MARK.0(dbl.1(sel.1-0(x0, x1))) → ACTIVE.0(dbl.0(active.1(sel.0-0(mark.1(x0), mark.0(x1)))))
MARK.1(indx.0-0(s.1(x0), y1)) → ACTIVE.1(indx.0-0(active.0(s.1(x0)), y1))
MARK.1(sel.1-1(sel.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.0(x0), mark.1(x1))), mark.1(y1)))
MARK.1(indx.0-0(cons.0-0(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.0(cons.0-0(x0, x1)), y1))
MARK.1(sel.0-0(cons.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.0-0(x0, x1)), mark.0(y1)))
MARK.1(sel.0-1(X1, X2)) → MARK.0(X1)
ACTIVE.1(sel.0-0(s.0(X), cons.0-0(Y, Z))) → MARK.1(sel.0-0(X, Z))
MARK.0(dbls.0(dbls.0(x0))) → ACTIVE.0(dbls.0(active.0(dbls.0(mark.0(x0)))))
MARK.1(indx.0-0(dbl.0(x0), y1)) → ACTIVE.1(indx.0-0(active.0(dbl.0(mark.0(x0))), y1))
MARK.1(sel.1-1(X1, X2)) → MARK.1(X1)
MARK.0(dbl.0(s.0(x0))) → ACTIVE.0(dbl.0(active.0(s.0(x0))))
MARK.1(sel.0-1(dbls.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbls.0(mark.0(x0))), mark.1(y1)))
MARK.1(sel.1-0(y0, from.0(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(from.0(x0))))
MARK.1(sel.0-1(nil., y1)) → ACTIVE.1(sel.0-0(active.0(nil.), mark.1(y1)))
MARK.1(indx.1-0(sel.0-0(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(sel.0-0(mark.0(x0), mark.0(x1))), y1))
MARK.1(sel.0-1(s.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(s.0(x0)), mark.1(y1)))
MARK.1(sel.0-0(dbl.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbl.0(mark.1(x0))), mark.0(y1)))
MARK.1(indx.0-0(dbls.1(x0), y1)) → ACTIVE.1(indx.0-0(active.0(dbls.0(mark.1(x0))), y1))
MARK.1(sel.0-0(y0, from.1(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(from.1(x0))))
ACTIVE.0(dbls.0(cons.1-0(y0, active.0(x0)))) → MARK.0(cons.0-0(dbl.1(y0), dbls.0(x0)))
MARK.0(dbls.0(x0)) → ACTIVE.0(dbls.0(x0))
MARK.1(indx.1-1(sel.1-1(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(sel.0-0(mark.1(x0), mark.1(x1))), y1))
MARK.1(sel.0-0(from.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(from.0(x0)), mark.0(y1)))
ACTIVE.1(sel.0-0(s.0(X), cons.0-1(Y, Z))) → MARK.1(sel.0-1(X, Z))
ACTIVE.0(dbls.0(cons.0-0(y0, active.1(x0)))) → MARK.0(cons.0-0(dbl.0(y0), dbls.1(x0)))
MARK.0(dbls.0(X)) → MARK.0(X)
MARK.1(indx.0-0(cons.0-1(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.0(cons.0-1(x0, x1)), y1))
MARK.1(sel.0-0(y0, cons.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(cons.0-1(x0, x1))))
MARK.1(sel.1-0(y0, 0.)) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(0.)))
MARK.1(indx.0-1(from.1(x0), y1)) → ACTIVE.1(indx.0-1(active.0(from.1(x0)), y1))
MARK.1(sel.1-1(y0, indx.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(indx.0-1(mark.0(x0), x1))))
MARK.1(indx.1-0(sel.1-1(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(sel.0-0(mark.1(x0), mark.1(x1))), y1))
ACTIVE.1(sel.0-0(0., cons.0-0(X, Y))) → MARK.0(X)
ACTIVE.0(dbls.0(cons.0-0(y0, mark.0(x0)))) → MARK.0(cons.0-0(dbl.0(y0), dbls.0(x0)))
MARK.1(sel.1-0(sel.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.1(x0), mark.0(x1))), mark.0(y1)))
ACTIVE.1(sel.0-0(s.0(X), cons.1-0(Y, Z))) → MARK.1(sel.0-0(X, Z))
MARK.1(indx.1-1(indx.1-1(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(indx.0-1(mark.1(x0), x1)), y1))
MARK.0(dbls.0(dbls.1(x0))) → ACTIVE.0(dbls.0(active.0(dbls.0(mark.1(x0)))))
MARK.0(dbls.0(s.1(x0))) → ACTIVE.0(dbls.0(active.0(s.1(x0))))
MARK.1(indx.0-1(dbls.1(x0), y1)) → ACTIVE.1(indx.0-1(active.0(dbls.0(mark.1(x0))), y1))
MARK.1(sel.0-0(dbls.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbls.0(mark.1(x0))), mark.0(y1)))
MARK.0(dbl.0(dbl.0(x0))) → ACTIVE.0(dbl.0(active.0(dbl.0(mark.0(x0)))))
ACTIVE.1(sel.0-0(s.1(X), cons.0-1(Y, Z))) → MARK.1(sel.1-1(X, Z))
MARK.1(sel.0-0(s.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(s.1(x0)), mark.0(y1)))
MARK.1(sel.0-1(x0, y1)) → ACTIVE.1(sel.0-0(x0, mark.1(y1)))
MARK.1(sel.1-1(y0, sel.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(sel.0-0(mark.1(x0), mark.0(x1)))))
MARK.1(sel.0-0(y0, cons.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(cons.1-0(x0, x1))))
MARK.1(indx.1-0(y0, mark.1(x1))) → ACTIVE.1(indx.0-1(mark.1(y0), x1))
MARK.0(dbls.0(dbl.0(x0))) → ACTIVE.0(dbls.0(active.0(dbl.0(mark.0(x0)))))
MARK.1(indx.0-0(s.0(x0), y1)) → ACTIVE.1(indx.0-0(active.0(s.0(x0)), y1))
MARK.1(sel.1-1(x0, y1)) → ACTIVE.1(sel.1-0(x0, mark.1(y1)))
MARK.1(sel.1-1(y0, sel.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(sel.0-0(mark.0(x0), mark.1(x1)))))
MARK.1(sel.1-0(y0, dbls.1(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(dbls.0(mark.1(x0)))))
MARK.1(indx.0-1(nil., y1)) → ACTIVE.1(indx.0-1(active.0(nil.), y1))
MARK.1(sel.1-1(X1, X2)) → MARK.1(X2)
MARK.1(sel.0-1(from.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(from.0(x0)), mark.1(y1)))
MARK.1(sel.0-0(y0, from.0(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(from.0(x0))))
MARK.1(sel.1-1(y0, indx.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(indx.0-0(mark.1(x0), x1))))
MARK.1(sel.1-1(y0, x1)) → ACTIVE.1(sel.0-1(mark.1(y0), x1))
MARK.1(indx.1-0(X1, X2)) → MARK.1(X1)
MARK.0(dbls.1(sel.0-0(x0, x1))) → ACTIVE.0(dbls.0(active.1(sel.0-0(mark.0(x0), mark.0(x1)))))
MARK.1(indx.0-1(cons.0-0(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.0(cons.0-0(x0, x1)), y1))
MARK.1(indx.1-1(sel.1-0(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(sel.0-0(mark.1(x0), mark.0(x1))), y1))
MARK.1(sel.0-1(0., y1)) → ACTIVE.1(sel.0-0(active.0(0.), mark.1(y1)))
MARK.1(sel.0-0(y0, cons.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(cons.0-0(x0, x1))))
MARK.1(sel.1-0(indx.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-1(mark.0(x0), x1)), mark.0(y1)))
MARK.1(indx.1-1(sel.0-0(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(sel.0-0(mark.0(x0), mark.0(x1))), y1))
MARK.1(sel.0-0(x0, y1)) → ACTIVE.1(sel.0-0(x0, mark.0(y1)))
MARK.1(indx.0-1(0., y1)) → ACTIVE.1(indx.0-1(active.0(0.), y1))
MARK.1(sel.0-1(y0, sel.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(sel.0-0(mark.1(x0), mark.1(x1)))))
MARK.1(indx.0-0(from.0(x0), y1)) → ACTIVE.1(indx.0-0(active.0(from.0(x0)), y1))
MARK.1(indx.1-1(indx.1-0(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(indx.0-0(mark.1(x0), x1)), y1))
MARK.0(dbl.1(indx.1-0(x0, x1))) → ACTIVE.0(dbl.0(active.1(indx.0-0(mark.1(x0), x1))))
MARK.1(sel.0-1(dbl.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbl.0(mark.0(x0))), mark.1(y1)))
MARK.1(sel.0-1(cons.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.1-0(x0, x1)), mark.1(y1)))
MARK.1(sel.0-0(cons.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.1-1(x0, x1)), mark.0(y1)))
MARK.0(dbls.0(cons.1-0(x0, x1))) → ACTIVE.0(dbls.0(active.0(cons.1-0(x0, x1))))
MARK.1(sel.1-1(y0, indx.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(indx.0-0(mark.0(x0), x1))))
MARK.0(dbls.1(indx.1-0(x0, x1))) → ACTIVE.0(dbls.0(active.1(indx.0-0(mark.1(x0), x1))))
MARK.0(dbl.1(indx.1-1(x0, x1))) → ACTIVE.0(dbl.0(active.1(indx.0-1(mark.1(x0), x1))))
MARK.0(dbl.0(cons.0-0(x0, x1))) → ACTIVE.0(dbl.0(active.0(cons.0-0(x0, x1))))
MARK.1(sel.1-1(indx.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-1(mark.1(x0), x1)), mark.1(y1)))
MARK.1(sel.0-0(cons.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.1-0(x0, x1)), mark.0(y1)))
MARK.1(indx.1-0(sel.0-1(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(sel.0-0(mark.0(x0), mark.1(x1))), y1))
ACTIVE.0(dbls.0(cons.0-0(y0, mark.1(x0)))) → MARK.0(cons.0-0(dbl.0(y0), dbls.1(x0)))
MARK.1(sel.1-0(y0, dbl.1(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(dbl.0(mark.1(x0)))))
MARK.1(indx.1-1(sel.0-1(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(sel.0-0(mark.0(x0), mark.1(x1))), y1))
ACTIVE.0(dbl.0(s.0(mark.0(x0)))) → MARK.0(s.0(s.0(dbl.0(x0))))
ACTIVE.0(dbls.0(cons.0-0(active.0(x0), y1))) → MARK.0(cons.0-0(dbl.0(x0), dbls.0(y1)))
MARK.1(sel.1-0(y0, dbl.0(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(dbl.0(mark.0(x0)))))
MARK.0(dbl.0(dbls.1(x0))) → ACTIVE.0(dbl.0(active.0(dbls.0(mark.1(x0)))))
MARK.1(sel.0-0(s.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(s.0(x0)), mark.0(y1)))
MARK.1(indx.0-0(y0, mark.0(x1))) → ACTIVE.1(indx.0-0(mark.0(y0), x1))
MARK.1(indx.0-1(cons.1-0(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.0(cons.1-0(x0, x1)), y1))
MARK.1(sel.1-0(y0, nil.)) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(nil.)))
ACTIVE.0(dbls.0(cons.0-1(mark.0(x0), y1))) → MARK.0(cons.0-0(dbl.0(x0), dbls.1(y1)))
MARK.0(dbls.0(cons.0-0(x0, x1))) → ACTIVE.0(dbls.0(active.0(cons.0-0(x0, x1))))
MARK.1(sel.0-0(y0, nil.)) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(nil.)))
MARK.1(sel.0-0(nil., y1)) → ACTIVE.1(sel.0-0(active.0(nil.), mark.0(y1)))
ACTIVE.1(sel.0-0(s.1(X), cons.1-0(Y, Z))) → MARK.1(sel.1-0(X, Z))
MARK.1(sel.0-1(dbl.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbl.0(mark.1(x0))), mark.1(y1)))
MARK.1(indx.1-1(indx.0-1(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(indx.0-1(mark.0(x0), x1)), y1))
MARK.1(sel.1-0(y0, s.0(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(s.0(x0))))
MARK.1(indx.0-0(dbls.0(x0), y1)) → ACTIVE.1(indx.0-0(active.0(dbls.0(mark.0(x0))), y1))
MARK.1(sel.0-0(y0, dbl.0(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(dbl.0(mark.0(x0)))))
MARK.1(indx.0-1(x0, x1)) → ACTIVE.1(indx.0-1(x0, x1))
MARK.1(indx.1-0(y0, active.1(x1))) → ACTIVE.1(indx.0-1(mark.1(y0), x1))
ACTIVE.1(sel.0-0(0., cons.0-1(X, Y))) → MARK.0(X)
MARK.1(indx.0-0(y0, active.0(x1))) → ACTIVE.1(indx.0-0(mark.0(y0), x1))
MARK.1(indx.0-0(cons.1-1(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.0(cons.1-1(x0, x1)), y1))
MARK.1(sel.1-1(indx.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-1(mark.0(x0), x1)), mark.1(y1)))
MARK.1(indx.0-0(dbl.1(x0), y1)) → ACTIVE.1(indx.0-0(active.0(dbl.0(mark.1(x0))), y1))
MARK.1(sel.1-0(y0, cons.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(cons.1-0(x0, x1))))

The TRS R consists of the following rules:

from.0(active.0(X)) → from.0(X)
active.1(sel.0-0(0., cons.0-0(X, Y))) → mark.0(X)
cons.0-1(active.0(X1), X2) → cons.0-1(X1, X2)
active.0(dbl.0(0.)) → mark.0(0.)
indx.0-0(X1, active.1(X2)) → indx.0-1(X1, X2)
active.1(indx.0-0(cons.1-1(X, Y), Z)) → mark.0(cons.1-1(sel.1-0(X, Z), indx.1-0(Y, Z)))
sel.0-1(active.0(X1), X2) → sel.0-1(X1, X2)
active.1(sel.0-0(s.1(X), cons.1-0(Y, Z))) → mark.1(sel.1-0(X, Z))
cons.0-0(active.0(X1), X2) → cons.0-0(X1, X2)
dbls.0(active.1(X)) → dbls.1(X)
indx.1-0(X1, active.1(X2)) → indx.1-1(X1, X2)
active.1(indx.0-0(cons.0-1(X, Y), Z)) → mark.0(cons.1-1(sel.0-0(X, Z), indx.1-0(Y, Z)))
active.0(dbls.0(cons.1-1(X, Y))) → mark.0(cons.0-0(dbl.1(X), dbls.1(Y)))
dbl.0(active.0(X)) → dbl.0(X)
active.0(from.1(X)) → mark.0(cons.1-0(X, from.0(s.1(X))))
active.1(sel.0-0(0., cons.0-1(X, Y))) → mark.0(X)
sel.0-0(mark.1(X1), X2) → sel.1-0(X1, X2)
indx.0-0(active.0(X1), X2) → indx.0-0(X1, X2)
mark.0(s.1(X)) → active.0(s.1(X))
cons.0-0(X1, mark.0(X2)) → cons.0-0(X1, X2)
dbl.0(mark.1(X)) → dbl.1(X)
indx.0-1(active.1(X1), X2) → indx.1-1(X1, X2)
mark.0(s.0(X)) → active.0(s.0(X))
mark.1(sel.1-0(X1, X2)) → active.1(sel.0-0(mark.1(X1), mark.0(X2)))
mark.0(cons.0-1(X1, X2)) → active.0(cons.0-1(X1, X2))
dbls.0(mark.1(X)) → dbls.1(X)
active.1(sel.0-0(0., cons.1-1(X, Y))) → mark.1(X)
active.1(indx.0-1(cons.0-0(X, Y), Z)) → mark.0(cons.1-1(sel.0-1(X, Z), indx.0-1(Y, Z)))
active.0(dbls.0(cons.0-0(X, Y))) → mark.0(cons.0-0(dbl.0(X), dbls.0(Y)))
mark.0(cons.1-1(X1, X2)) → active.0(cons.1-1(X1, X2))
sel.0-1(mark.1(X1), X2) → sel.1-1(X1, X2)
cons.0-0(X1, active.0(X2)) → cons.0-0(X1, X2)
cons.1-0(X1, mark.1(X2)) → cons.1-1(X1, X2)
sel.0-1(mark.0(X1), X2) → sel.0-1(X1, X2)
indx.0-1(active.0(X1), X2) → indx.0-1(X1, X2)
sel.0-0(active.0(X1), X2) → sel.0-0(X1, X2)
dbl.0(mark.0(X)) → dbl.0(X)
cons.0-1(mark.1(X1), X2) → cons.1-1(X1, X2)
mark.0(nil.) → active.0(nil.)
indx.0-0(X1, mark.0(X2)) → indx.0-0(X1, X2)
mark.1(sel.1-1(X1, X2)) → active.1(sel.0-0(mark.1(X1), mark.1(X2)))
indx.0-0(mark.0(X1), X2) → indx.0-0(X1, X2)
mark.1(indx.0-0(X1, X2)) → active.1(indx.0-0(mark.0(X1), X2))
active.0(dbls.0(cons.1-0(X, Y))) → mark.0(cons.0-0(dbl.1(X), dbls.0(Y)))
sel.0-0(mark.0(X1), X2) → sel.0-0(X1, X2)
indx.0-0(active.1(X1), X2) → indx.1-0(X1, X2)
active.1(indx.0-0(nil., X)) → mark.0(nil.)
indx.1-0(X1, mark.1(X2)) → indx.1-1(X1, X2)
indx.0-0(mark.1(X1), X2) → indx.1-0(X1, X2)
mark.1(indx.0-1(X1, X2)) → active.1(indx.0-1(mark.0(X1), X2))
mark.1(indx.1-0(X1, X2)) → active.1(indx.0-0(mark.1(X1), X2))
active.1(sel.0-0(s.1(X), cons.0-0(Y, Z))) → mark.1(sel.1-0(X, Z))
active.1(sel.0-0(s.0(X), cons.0-1(Y, Z))) → mark.1(sel.0-1(X, Z))
active.1(indx.0-0(cons.0-0(X, Y), Z)) → mark.0(cons.1-1(sel.0-0(X, Z), indx.0-0(Y, Z)))
mark.0(dbls.1(X)) → active.0(dbls.0(mark.1(X)))
mark.1(sel.0-1(X1, X2)) → active.1(sel.0-0(mark.0(X1), mark.1(X2)))
active.1(indx.0-1(cons.1-1(X, Y), Z)) → mark.0(cons.1-1(sel.1-1(X, Z), indx.1-1(Y, Z)))
indx.0-0(X1, mark.1(X2)) → indx.0-1(X1, X2)
active.0(dbls.0(nil.)) → mark.0(nil.)
sel.0-1(active.1(X1), X2) → sel.1-1(X1, X2)
cons.1-0(X1, active.0(X2)) → cons.1-0(X1, X2)
cons.0-0(X1, active.1(X2)) → cons.0-1(X1, X2)
sel.1-0(X1, active.1(X2)) → sel.1-1(X1, X2)
cons.0-0(X1, mark.1(X2)) → cons.0-1(X1, X2)
mark.1(indx.1-1(X1, X2)) → active.1(indx.0-1(mark.1(X1), X2))
cons.1-0(X1, active.1(X2)) → cons.1-1(X1, X2)
from.0(mark.0(X)) → from.0(X)
mark.0(dbl.1(X)) → active.0(dbl.0(mark.1(X)))
mark.0(from.1(X)) → active.0(from.1(X))
indx.1-0(X1, mark.0(X2)) → indx.1-0(X1, X2)
active.0(dbls.0(cons.0-1(X, Y))) → mark.0(cons.0-0(dbl.0(X), dbls.1(Y)))
mark.0(dbls.0(X)) → active.0(dbls.0(mark.0(X)))
active.1(sel.0-0(s.1(X), cons.0-1(Y, Z))) → mark.1(sel.1-1(X, Z))
dbl.0(active.1(X)) → dbl.1(X)
cons.0-1(mark.0(X1), X2) → cons.0-1(X1, X2)
sel.0-0(X1, mark.0(X2)) → sel.0-0(X1, X2)
mark.0(0.) → active.0(0.)
active.0(dbl.0(s.1(X))) → mark.0(s.0(s.0(dbl.1(X))))
active.1(sel.0-0(0., cons.1-0(X, Y))) → mark.1(X)
sel.0-0(X1, mark.1(X2)) → sel.0-1(X1, X2)
cons.0-0(active.1(X1), X2) → cons.1-0(X1, X2)
indx.1-0(X1, active.0(X2)) → indx.1-0(X1, X2)
dbls.0(active.0(X)) → dbls.0(X)
active.0(from.0(X)) → mark.0(cons.0-0(X, from.0(s.0(X))))
active.1(sel.0-0(s.1(X), cons.1-1(Y, Z))) → mark.1(sel.1-1(X, Z))
cons.1-0(X1, mark.0(X2)) → cons.1-0(X1, X2)
indx.0-1(mark.0(X1), X2) → indx.0-1(X1, X2)
mark.0(cons.1-0(X1, X2)) → active.0(cons.1-0(X1, X2))
active.1(sel.0-0(s.0(X), cons.1-1(Y, Z))) → mark.1(sel.0-1(X, Z))
sel.1-0(X1, active.0(X2)) → sel.1-0(X1, X2)
indx.0-1(mark.1(X1), X2) → indx.1-1(X1, X2)
sel.0-0(X1, active.0(X2)) → sel.0-0(X1, X2)
active.1(indx.0-1(cons.0-1(X, Y), Z)) → mark.0(cons.1-1(sel.0-1(X, Z), indx.1-1(Y, Z)))
s.0(active.0(X)) → s.0(X)
cons.0-1(active.1(X1), X2) → cons.1-1(X1, X2)
sel.0-0(active.1(X1), X2) → sel.1-0(X1, X2)
active.1(sel.0-0(s.0(X), cons.1-0(Y, Z))) → mark.1(sel.0-0(X, Z))
s.0(mark.1(X)) → s.1(X)
mark.0(dbl.0(X)) → active.0(dbl.0(mark.0(X)))
sel.1-0(X1, mark.0(X2)) → sel.1-0(X1, X2)
indx.0-0(X1, active.0(X2)) → indx.0-0(X1, X2)
active.1(indx.0-1(nil., X)) → mark.0(nil.)
sel.0-0(X1, active.1(X2)) → sel.0-1(X1, X2)
mark.0(cons.0-0(X1, X2)) → active.0(cons.0-0(X1, X2))
mark.0(from.0(X)) → active.0(from.0(X))
from.0(active.1(X)) → from.1(X)
s.0(active.1(X)) → s.1(X)
active.0(dbl.0(s.0(X))) → mark.0(s.0(s.0(dbl.0(X))))
from.0(mark.1(X)) → from.1(X)
cons.0-0(mark.1(X1), X2) → cons.1-0(X1, X2)
sel.1-0(X1, mark.1(X2)) → sel.1-1(X1, X2)
active.1(indx.0-1(cons.1-0(X, Y), Z)) → mark.0(cons.1-1(sel.1-1(X, Z), indx.0-1(Y, Z)))
active.1(indx.0-0(cons.1-0(X, Y), Z)) → mark.0(cons.1-1(sel.1-0(X, Z), indx.0-0(Y, Z)))
s.0(mark.0(X)) → s.0(X)
mark.1(sel.0-0(X1, X2)) → active.1(sel.0-0(mark.0(X1), mark.0(X2)))
dbls.0(mark.0(X)) → dbls.0(X)
active.1(sel.0-0(s.0(X), cons.0-0(Y, Z))) → mark.1(sel.0-0(X, Z))
cons.0-0(mark.0(X1), X2) → cons.0-0(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK.1(indx.0-0(x0, x1)) → ACTIVE.1(indx.0-0(x0, x1))
MARK.1(indx.0-1(dbl.1(x0), y1)) → ACTIVE.1(indx.0-1(active.0(dbl.0(mark.1(x0))), y1))
MARK.1(indx.0-1(cons.0-1(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.0(cons.0-1(x0, x1)), y1))
MARK.1(indx.0-1(s.1(x0), y1)) → ACTIVE.1(indx.0-1(active.0(s.1(x0)), y1))
MARK.1(indx.1-0(indx.1-0(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(indx.0-0(mark.1(x0), x1)), y1))
MARK.1(indx.1-0(sel.1-0(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(sel.0-0(mark.1(x0), mark.0(x1))), y1))
MARK.1(indx.1-0(y0, active.0(x1))) → ACTIVE.1(indx.0-0(mark.1(y0), x1))
MARK.1(indx.0-1(dbls.0(x0), y1)) → ACTIVE.1(indx.0-1(active.0(dbls.0(mark.0(x0))), y1))
MARK.1(indx.0-0(y0, mark.1(x1))) → ACTIVE.1(indx.0-1(mark.0(y0), x1))
MARK.1(indx.1-1(indx.0-0(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(indx.0-0(mark.0(x0), x1)), y1))
MARK.1(indx.1-0(x0, x1)) → ACTIVE.1(indx.1-0(x0, x1))
MARK.1(indx.0-0(cons.1-0(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.0(cons.1-0(x0, x1)), y1))
MARK.1(indx.0-1(cons.1-1(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.0(cons.1-1(x0, x1)), y1))
MARK.1(indx.0-1(dbl.0(x0), y1)) → ACTIVE.1(indx.0-1(active.0(dbl.0(mark.0(x0))), y1))
MARK.1(indx.1-0(indx.0-1(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(indx.0-1(mark.0(x0), x1)), y1))
MARK.1(indx.0-0(0., y1)) → ACTIVE.1(indx.0-0(active.0(0.), y1))
MARK.1(indx.1-0(indx.0-0(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(indx.0-0(mark.0(x0), x1)), y1))
MARK.1(indx.0-1(from.0(x0), y1)) → ACTIVE.1(indx.0-1(active.0(from.0(x0)), y1))
MARK.1(indx.0-0(nil., y1)) → ACTIVE.1(indx.0-0(active.0(nil.), y1))
MARK.1(indx.0-0(y0, active.1(x1))) → ACTIVE.1(indx.0-1(mark.0(y0), x1))
MARK.1(sel.0-1(y0, x1)) → ACTIVE.1(sel.0-1(mark.0(y0), x1))
MARK.1(indx.1-0(y0, mark.0(x1))) → ACTIVE.1(indx.0-0(mark.1(y0), x1))
MARK.1(indx.1-0(indx.1-1(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(indx.0-1(mark.1(x0), x1)), y1))
MARK.1(indx.0-1(s.0(x0), y1)) → ACTIVE.1(indx.0-1(active.0(s.0(x0)), y1))
MARK.1(indx.0-0(from.1(x0), y1)) → ACTIVE.1(indx.0-0(active.0(from.1(x0)), y1))
MARK.1(sel.1-0(x0, y1)) → ACTIVE.1(sel.1-0(x0, mark.0(y1)))
MARK.1(indx.0-0(s.1(x0), y1)) → ACTIVE.1(indx.0-0(active.0(s.1(x0)), y1))
MARK.1(indx.0-0(cons.0-0(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.0(cons.0-0(x0, x1)), y1))
MARK.1(indx.0-0(dbl.0(x0), y1)) → ACTIVE.1(indx.0-0(active.0(dbl.0(mark.0(x0))), y1))
MARK.1(indx.1-0(sel.0-0(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(sel.0-0(mark.0(x0), mark.0(x1))), y1))
MARK.1(indx.0-0(dbls.1(x0), y1)) → ACTIVE.1(indx.0-0(active.0(dbls.0(mark.1(x0))), y1))
MARK.1(indx.1-1(sel.1-1(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(sel.0-0(mark.1(x0), mark.1(x1))), y1))
MARK.1(indx.0-0(cons.0-1(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.0(cons.0-1(x0, x1)), y1))
MARK.1(indx.0-1(from.1(x0), y1)) → ACTIVE.1(indx.0-1(active.0(from.1(x0)), y1))
MARK.1(indx.1-0(sel.1-1(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(sel.0-0(mark.1(x0), mark.1(x1))), y1))
MARK.1(indx.1-1(indx.1-1(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(indx.0-1(mark.1(x0), x1)), y1))
MARK.1(indx.0-1(dbls.1(x0), y1)) → ACTIVE.1(indx.0-1(active.0(dbls.0(mark.1(x0))), y1))
MARK.1(indx.1-0(y0, mark.1(x1))) → ACTIVE.1(indx.0-1(mark.1(y0), x1))
MARK.1(indx.0-0(s.0(x0), y1)) → ACTIVE.1(indx.0-0(active.0(s.0(x0)), y1))
MARK.1(sel.1-1(x0, y1)) → ACTIVE.1(sel.1-0(x0, mark.1(y1)))
MARK.1(indx.0-1(nil., y1)) → ACTIVE.1(indx.0-1(active.0(nil.), y1))
MARK.1(sel.1-1(y0, x1)) → ACTIVE.1(sel.0-1(mark.1(y0), x1))
MARK.1(indx.0-1(cons.0-0(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.0(cons.0-0(x0, x1)), y1))
MARK.1(indx.1-1(sel.1-0(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(sel.0-0(mark.1(x0), mark.0(x1))), y1))
MARK.1(indx.1-1(sel.0-0(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(sel.0-0(mark.0(x0), mark.0(x1))), y1))
MARK.1(indx.0-1(0., y1)) → ACTIVE.1(indx.0-1(active.0(0.), y1))
MARK.1(indx.0-0(from.0(x0), y1)) → ACTIVE.1(indx.0-0(active.0(from.0(x0)), y1))
MARK.1(indx.1-1(indx.1-0(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(indx.0-0(mark.1(x0), x1)), y1))
MARK.1(indx.1-0(sel.0-1(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.1(sel.0-0(mark.0(x0), mark.1(x1))), y1))
MARK.1(indx.1-1(sel.0-1(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(sel.0-0(mark.0(x0), mark.1(x1))), y1))
MARK.1(indx.0-0(y0, mark.0(x1))) → ACTIVE.1(indx.0-0(mark.0(y0), x1))
MARK.1(indx.0-1(cons.1-0(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.0(cons.1-0(x0, x1)), y1))
MARK.1(indx.1-1(indx.0-1(x0, x1), y1)) → ACTIVE.1(indx.0-1(active.1(indx.0-1(mark.0(x0), x1)), y1))
MARK.1(indx.0-0(dbls.0(x0), y1)) → ACTIVE.1(indx.0-0(active.0(dbls.0(mark.0(x0))), y1))
MARK.1(indx.0-1(x0, x1)) → ACTIVE.1(indx.0-1(x0, x1))
MARK.1(indx.1-0(y0, active.1(x1))) → ACTIVE.1(indx.0-1(mark.1(y0), x1))
MARK.1(indx.0-0(y0, active.0(x1))) → ACTIVE.1(indx.0-0(mark.0(y0), x1))
MARK.1(indx.0-0(cons.1-1(x0, x1), y1)) → ACTIVE.1(indx.0-0(active.0(cons.1-1(x0, x1)), y1))
MARK.1(indx.0-0(dbl.1(x0), y1)) → ACTIVE.1(indx.0-0(active.0(dbl.0(mark.1(x0))), y1))
The remaining pairs can at least be oriented weakly.

ACTIVE.1(sel.0-0(0., cons.1-0(X, Y))) → MARK.1(X)
MARK.1(sel.0-0(y0, x1)) → ACTIVE.1(sel.0-0(mark.0(y0), x1))
MARK.1(sel.1-0(sel.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.1(x0), mark.1(x1))), mark.0(y1)))
MARK.0(dbl.0(X)) → MARK.0(X)
MARK.1(sel.0-0(from.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(from.1(x0)), mark.0(y1)))
MARK.1(indx.0-0(X1, X2)) → MARK.0(X1)
ACTIVE.0(dbls.0(cons.0-0(y0, active.0(x0)))) → MARK.0(cons.0-0(dbl.0(y0), dbls.0(x0)))
MARK.0(dbl.0(s.1(x0))) → ACTIVE.0(dbl.0(active.0(s.1(x0))))
MARK.1(sel.0-0(y0, dbls.0(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(dbls.0(mark.0(x0)))))
MARK.1(sel.1-0(y0, dbls.0(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(dbls.0(mark.0(x0)))))
MARK.0(dbls.1(X)) → MARK.1(X)
MARK.1(sel.0-0(cons.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.0-1(x0, x1)), mark.0(y1)))
MARK.1(sel.0-1(y0, sel.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(sel.0-0(mark.1(x0), mark.0(x1)))))
MARK.1(indx.0-1(X1, X2)) → MARK.0(X1)
MARK.0(dbl.1(indx.0-0(x0, x1))) → ACTIVE.0(dbl.0(active.1(indx.0-0(mark.0(x0), x1))))
MARK.0(dbl.0(from.1(x0))) → ACTIVE.0(dbl.0(active.0(from.1(x0))))
MARK.0(dbl.1(sel.1-1(x0, x1))) → ACTIVE.0(dbl.0(active.1(sel.0-0(mark.1(x0), mark.1(x1)))))
ACTIVE.0(dbls.0(cons.0-1(active.0(x0), y1))) → MARK.0(cons.0-0(dbl.0(x0), dbls.1(y1)))
MARK.1(sel.0-1(y0, indx.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(indx.0-0(mark.0(x0), x1))))
MARK.1(sel.0-1(y0, indx.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(indx.0-1(mark.1(x0), x1))))
MARK.1(sel.1-0(y0, cons.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(cons.0-1(x0, x1))))
MARK.1(sel.0-0(X1, X2)) → MARK.0(X1)
MARK.0(dbls.0(s.0(x0))) → ACTIVE.0(dbls.0(active.0(s.0(x0))))
MARK.1(sel.0-0(y0, dbl.1(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(dbl.0(mark.1(x0)))))
MARK.1(sel.0-1(dbls.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbls.0(mark.1(x0))), mark.1(y1)))
ACTIVE.1(sel.0-0(0., cons.1-1(X, Y))) → MARK.1(X)
MARK.0(dbl.0(from.0(x0))) → ACTIVE.0(dbl.0(active.0(from.0(x0))))
MARK.1(sel.0-0(y0, dbls.1(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(dbls.0(mark.1(x0)))))
MARK.0(dbl.0(dbl.1(x0))) → ACTIVE.0(dbl.0(active.0(dbl.0(mark.1(x0)))))
MARK.0(dbls.0(from.1(x0))) → ACTIVE.0(dbls.0(active.0(from.1(x0))))
MARK.1(sel.0-1(X1, X2)) → MARK.1(X2)
MARK.1(sel.0-1(from.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(from.1(x0)), mark.1(y1)))
MARK.0(dbl.0(x0)) → ACTIVE.0(dbl.0(x0))
MARK.1(sel.0-1(cons.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.1-1(x0, x1)), mark.1(y1)))
MARK.1(sel.0-1(y0, indx.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(indx.0-1(mark.0(x0), x1))))
MARK.1(sel.1-0(indx.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-1(mark.1(x0), x1)), mark.0(y1)))
MARK.0(dbls.1(sel.1-1(x0, x1))) → ACTIVE.0(dbls.0(active.1(sel.0-0(mark.1(x0), mark.1(x1)))))
MARK.0(dbl.1(X)) → MARK.1(X)
ACTIVE.0(dbls.0(cons.0-0(active.1(x0), y1))) → MARK.0(cons.0-0(dbl.1(x0), dbls.0(y1)))
MARK.1(sel.1-0(sel.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.0(x0), mark.1(x1))), mark.0(y1)))
MARK.0(dbls.1(sel.1-0(x0, x1))) → ACTIVE.0(dbls.0(active.1(sel.0-0(mark.1(x0), mark.0(x1)))))
MARK.0(dbls.0(cons.1-1(x0, x1))) → ACTIVE.0(dbls.0(active.0(cons.1-1(x0, x1))))
MARK.1(sel.1-0(indx.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-0(mark.1(x0), x1)), mark.0(y1)))
MARK.1(sel.1-1(sel.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.1(x0), mark.1(x1))), mark.1(y1)))
MARK.1(sel.0-1(y0, indx.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(indx.0-0(mark.1(x0), x1))))
MARK.1(sel.1-1(sel.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.0(x0), mark.0(x1))), mark.1(y1)))
ACTIVE.1(sel.0-0(s.0(X), cons.1-1(Y, Z))) → MARK.1(sel.0-1(X, Z))
MARK.1(sel.1-0(y0, cons.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(cons.1-1(x0, x1))))
MARK.0(dbl.0(cons.0-1(x0, x1))) → ACTIVE.0(dbl.0(active.0(cons.0-1(x0, x1))))
ACTIVE.0(dbls.0(cons.0-0(mark.1(x0), y1))) → MARK.0(cons.0-0(dbl.1(x0), dbls.0(y1)))
MARK.1(sel.0-1(y0, sel.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(sel.0-0(mark.0(x0), mark.0(x1)))))
ACTIVE.0(dbl.0(s.0(active.0(x0)))) → MARK.0(s.0(s.0(dbl.0(x0))))
MARK.0(dbl.0(dbls.0(x0))) → ACTIVE.0(dbl.0(active.0(dbls.0(mark.0(x0)))))
MARK.1(sel.1-1(y0, sel.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(sel.0-0(mark.1(x0), mark.1(x1)))))
MARK.1(sel.1-0(y0, cons.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(cons.0-0(x0, x1))))
ACTIVE.0(dbls.0(cons.0-0(mark.0(x0), y1))) → MARK.0(cons.0-0(dbl.0(x0), dbls.0(y1)))
MARK.1(sel.0-0(0., y1)) → ACTIVE.1(sel.0-0(active.0(0.), mark.0(y1)))
MARK.1(sel.0-0(y0, 0.)) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(0.)))
ACTIVE.1(sel.0-0(s.1(X), cons.1-1(Y, Z))) → MARK.1(sel.1-1(X, Z))
MARK.1(sel.0-1(cons.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.0-1(x0, x1)), mark.1(y1)))
MARK.0(dbl.1(sel.0-1(x0, x1))) → ACTIVE.0(dbl.0(active.1(sel.0-0(mark.0(x0), mark.1(x1)))))
MARK.0(dbls.1(indx.0-1(x0, x1))) → ACTIVE.0(dbls.0(active.1(indx.0-1(mark.0(x0), x1))))
MARK.1(sel.0-1(s.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(s.1(x0)), mark.1(y1)))
MARK.1(sel.1-1(indx.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-0(mark.1(x0), x1)), mark.1(y1)))
MARK.1(sel.0-0(dbl.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbl.0(mark.0(x0))), mark.0(y1)))
MARK.0(dbl.0(cons.1-1(x0, x1))) → ACTIVE.0(dbl.0(active.0(cons.1-1(x0, x1))))
MARK.0(dbls.0(dbl.1(x0))) → ACTIVE.0(dbls.0(active.0(dbl.0(mark.1(x0)))))
MARK.0(dbls.0(from.0(x0))) → ACTIVE.0(dbls.0(active.0(from.0(x0))))
MARK.0(dbl.0(cons.1-0(x0, x1))) → ACTIVE.0(dbl.0(active.0(cons.1-0(x0, x1))))
MARK.0(dbl.1(sel.0-0(x0, x1))) → ACTIVE.0(dbl.0(active.1(sel.0-0(mark.0(x0), mark.0(x1)))))
ACTIVE.0(dbls.0(cons.1-0(y0, mark.0(x0)))) → MARK.0(cons.0-0(dbl.1(y0), dbls.0(x0)))
MARK.1(sel.0-1(cons.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.0-0(x0, x1)), mark.1(y1)))
MARK.1(indx.1-1(X1, X2)) → MARK.1(X1)
MARK.1(sel.1-1(sel.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.1(x0), mark.0(x1))), mark.1(y1)))
MARK.1(sel.1-1(y0, indx.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(indx.0-1(mark.1(x0), x1))))
MARK.0(dbls.1(indx.0-0(x0, x1))) → ACTIVE.0(dbls.0(active.1(indx.0-0(mark.0(x0), x1))))
MARK.1(sel.1-0(indx.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-0(mark.0(x0), x1)), mark.0(y1)))
MARK.1(sel.0-1(y0, sel.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(sel.0-0(mark.0(x0), mark.1(x1)))))
MARK.1(sel.1-0(sel.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.0(x0), mark.0(x1))), mark.0(y1)))
MARK.1(sel.0-0(X1, X2)) → MARK.0(X2)
MARK.0(from.0(X)) → ACTIVE.0(from.0(X))
MARK.1(sel.1-0(y0, from.1(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(from.1(x0))))
MARK.1(sel.0-0(y0, s.0(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(s.0(x0))))
MARK.0(dbl.1(indx.0-1(x0, x1))) → ACTIVE.0(dbl.0(active.1(indx.0-1(mark.0(x0), x1))))
MARK.1(sel.0-0(y0, s.1(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(s.1(x0))))
MARK.1(sel.1-0(X1, X2)) → MARK.1(X1)
MARK.1(sel.0-0(y0, cons.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(cons.1-1(x0, x1))))
MARK.0(dbls.1(sel.0-1(x0, x1))) → ACTIVE.0(dbls.0(active.1(sel.0-0(mark.0(x0), mark.1(x1)))))
MARK.0(dbls.1(indx.1-1(x0, x1))) → ACTIVE.0(dbls.0(active.1(indx.0-1(mark.1(x0), x1))))
ACTIVE.1(sel.0-0(s.1(X), cons.0-0(Y, Z))) → MARK.1(sel.1-0(X, Z))
MARK.1(sel.1-0(y0, x1)) → ACTIVE.1(sel.0-0(mark.1(y0), x1))
MARK.1(sel.1-0(X1, X2)) → MARK.0(X2)
MARK.0(dbls.0(cons.0-1(x0, x1))) → ACTIVE.0(dbls.0(active.0(cons.0-1(x0, x1))))
MARK.1(sel.1-1(indx.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-0(mark.0(x0), x1)), mark.1(y1)))
MARK.1(sel.0-0(dbls.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbls.0(mark.0(x0))), mark.0(y1)))
MARK.1(sel.1-1(y0, sel.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(sel.0-0(mark.0(x0), mark.0(x1)))))
MARK.1(sel.1-0(y0, s.1(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(s.1(x0))))
ACTIVE.0(from.0(X)) → MARK.0(cons.0-0(X, from.0(s.0(X))))
MARK.0(dbl.1(sel.1-0(x0, x1))) → ACTIVE.0(dbl.0(active.1(sel.0-0(mark.1(x0), mark.0(x1)))))
MARK.1(sel.1-1(sel.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.0(x0), mark.1(x1))), mark.1(y1)))
MARK.1(sel.0-0(cons.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.0-0(x0, x1)), mark.0(y1)))
MARK.1(sel.0-1(X1, X2)) → MARK.0(X1)
ACTIVE.1(sel.0-0(s.0(X), cons.0-0(Y, Z))) → MARK.1(sel.0-0(X, Z))
MARK.0(dbls.0(dbls.0(x0))) → ACTIVE.0(dbls.0(active.0(dbls.0(mark.0(x0)))))
MARK.1(sel.1-1(X1, X2)) → MARK.1(X1)
MARK.0(dbl.0(s.0(x0))) → ACTIVE.0(dbl.0(active.0(s.0(x0))))
MARK.1(sel.0-1(dbls.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbls.0(mark.0(x0))), mark.1(y1)))
MARK.1(sel.1-0(y0, from.0(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(from.0(x0))))
MARK.1(sel.0-1(nil., y1)) → ACTIVE.1(sel.0-0(active.0(nil.), mark.1(y1)))
MARK.1(sel.0-1(s.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(s.0(x0)), mark.1(y1)))
MARK.1(sel.0-0(dbl.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbl.0(mark.1(x0))), mark.0(y1)))
MARK.1(sel.0-0(y0, from.1(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(from.1(x0))))
ACTIVE.0(dbls.0(cons.1-0(y0, active.0(x0)))) → MARK.0(cons.0-0(dbl.1(y0), dbls.0(x0)))
MARK.0(dbls.0(x0)) → ACTIVE.0(dbls.0(x0))
MARK.1(sel.0-0(from.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(from.0(x0)), mark.0(y1)))
ACTIVE.1(sel.0-0(s.0(X), cons.0-1(Y, Z))) → MARK.1(sel.0-1(X, Z))
ACTIVE.0(dbls.0(cons.0-0(y0, active.1(x0)))) → MARK.0(cons.0-0(dbl.0(y0), dbls.1(x0)))
MARK.0(dbls.0(X)) → MARK.0(X)
MARK.1(sel.0-0(y0, cons.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(cons.0-1(x0, x1))))
MARK.1(sel.1-0(y0, 0.)) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(0.)))
MARK.1(sel.1-1(y0, indx.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(indx.0-1(mark.0(x0), x1))))
ACTIVE.1(sel.0-0(0., cons.0-0(X, Y))) → MARK.0(X)
ACTIVE.0(dbls.0(cons.0-0(y0, mark.0(x0)))) → MARK.0(cons.0-0(dbl.0(y0), dbls.0(x0)))
MARK.1(sel.1-0(sel.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.1(x0), mark.0(x1))), mark.0(y1)))
ACTIVE.1(sel.0-0(s.0(X), cons.1-0(Y, Z))) → MARK.1(sel.0-0(X, Z))
MARK.0(dbls.0(dbls.1(x0))) → ACTIVE.0(dbls.0(active.0(dbls.0(mark.1(x0)))))
MARK.0(dbls.0(s.1(x0))) → ACTIVE.0(dbls.0(active.0(s.1(x0))))
MARK.1(sel.0-0(dbls.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbls.0(mark.1(x0))), mark.0(y1)))
MARK.0(dbl.0(dbl.0(x0))) → ACTIVE.0(dbl.0(active.0(dbl.0(mark.0(x0)))))
ACTIVE.1(sel.0-0(s.1(X), cons.0-1(Y, Z))) → MARK.1(sel.1-1(X, Z))
MARK.1(sel.0-0(s.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(s.1(x0)), mark.0(y1)))
MARK.1(sel.0-1(x0, y1)) → ACTIVE.1(sel.0-0(x0, mark.1(y1)))
MARK.1(sel.1-1(y0, sel.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(sel.0-0(mark.1(x0), mark.0(x1)))))
MARK.1(sel.0-0(y0, cons.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(cons.1-0(x0, x1))))
MARK.0(dbls.0(dbl.0(x0))) → ACTIVE.0(dbls.0(active.0(dbl.0(mark.0(x0)))))
MARK.1(sel.1-1(y0, sel.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(sel.0-0(mark.0(x0), mark.1(x1)))))
MARK.1(sel.1-0(y0, dbls.1(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(dbls.0(mark.1(x0)))))
MARK.1(sel.1-1(X1, X2)) → MARK.1(X2)
MARK.1(sel.0-1(from.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(from.0(x0)), mark.1(y1)))
MARK.1(sel.0-0(y0, from.0(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(from.0(x0))))
MARK.1(sel.1-1(y0, indx.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(indx.0-0(mark.1(x0), x1))))
MARK.1(indx.1-0(X1, X2)) → MARK.1(X1)
MARK.0(dbls.1(sel.0-0(x0, x1))) → ACTIVE.0(dbls.0(active.1(sel.0-0(mark.0(x0), mark.0(x1)))))
MARK.1(sel.0-1(0., y1)) → ACTIVE.1(sel.0-0(active.0(0.), mark.1(y1)))
MARK.1(sel.0-0(y0, cons.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(cons.0-0(x0, x1))))
MARK.1(sel.1-0(indx.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-1(mark.0(x0), x1)), mark.0(y1)))
MARK.1(sel.0-0(x0, y1)) → ACTIVE.1(sel.0-0(x0, mark.0(y1)))
MARK.1(sel.0-1(y0, sel.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(sel.0-0(mark.1(x0), mark.1(x1)))))
MARK.0(dbl.1(indx.1-0(x0, x1))) → ACTIVE.0(dbl.0(active.1(indx.0-0(mark.1(x0), x1))))
MARK.1(sel.0-1(dbl.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbl.0(mark.0(x0))), mark.1(y1)))
MARK.1(sel.0-1(cons.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.1-0(x0, x1)), mark.1(y1)))
MARK.1(sel.0-0(cons.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.1-1(x0, x1)), mark.0(y1)))
MARK.0(dbls.0(cons.1-0(x0, x1))) → ACTIVE.0(dbls.0(active.0(cons.1-0(x0, x1))))
MARK.1(sel.1-1(y0, indx.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(indx.0-0(mark.0(x0), x1))))
MARK.0(dbls.1(indx.1-0(x0, x1))) → ACTIVE.0(dbls.0(active.1(indx.0-0(mark.1(x0), x1))))
MARK.0(dbl.1(indx.1-1(x0, x1))) → ACTIVE.0(dbl.0(active.1(indx.0-1(mark.1(x0), x1))))
MARK.0(dbl.0(cons.0-0(x0, x1))) → ACTIVE.0(dbl.0(active.0(cons.0-0(x0, x1))))
MARK.1(sel.1-1(indx.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-1(mark.1(x0), x1)), mark.1(y1)))
MARK.1(sel.0-0(cons.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.1-0(x0, x1)), mark.0(y1)))
ACTIVE.0(dbls.0(cons.0-0(y0, mark.1(x0)))) → MARK.0(cons.0-0(dbl.0(y0), dbls.1(x0)))
MARK.1(sel.1-0(y0, dbl.1(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(dbl.0(mark.1(x0)))))
ACTIVE.0(dbl.0(s.0(mark.0(x0)))) → MARK.0(s.0(s.0(dbl.0(x0))))
ACTIVE.0(dbls.0(cons.0-0(active.0(x0), y1))) → MARK.0(cons.0-0(dbl.0(x0), dbls.0(y1)))
MARK.1(sel.1-0(y0, dbl.0(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(dbl.0(mark.0(x0)))))
MARK.0(dbl.0(dbls.1(x0))) → ACTIVE.0(dbl.0(active.0(dbls.0(mark.1(x0)))))
MARK.1(sel.0-0(s.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(s.0(x0)), mark.0(y1)))
MARK.1(sel.1-0(y0, nil.)) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(nil.)))
ACTIVE.0(dbls.0(cons.0-1(mark.0(x0), y1))) → MARK.0(cons.0-0(dbl.0(x0), dbls.1(y1)))
MARK.0(dbls.0(cons.0-0(x0, x1))) → ACTIVE.0(dbls.0(active.0(cons.0-0(x0, x1))))
MARK.1(sel.0-0(y0, nil.)) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(nil.)))
MARK.1(sel.0-0(nil., y1)) → ACTIVE.1(sel.0-0(active.0(nil.), mark.0(y1)))
ACTIVE.1(sel.0-0(s.1(X), cons.1-0(Y, Z))) → MARK.1(sel.1-0(X, Z))
MARK.1(sel.0-1(dbl.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbl.0(mark.1(x0))), mark.1(y1)))
MARK.1(sel.1-0(y0, s.0(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(s.0(x0))))
MARK.1(sel.0-0(y0, dbl.0(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(dbl.0(mark.0(x0)))))
ACTIVE.1(sel.0-0(0., cons.0-1(X, Y))) → MARK.0(X)
MARK.1(sel.1-1(indx.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-1(mark.0(x0), x1)), mark.1(y1)))
MARK.1(sel.1-0(y0, cons.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(cons.1-0(x0, x1))))
Used ordering: Polynomial interpretation [25]:

POL(0.) = 0   
POL(ACTIVE.0(x1)) = 1   
POL(ACTIVE.1(x1)) = x1   
POL(MARK.0(x1)) = 1   
POL(MARK.1(x1)) = 1   
POL(active.0(x1)) = 0   
POL(active.1(x1)) = 0   
POL(cons.0-0(x1, x2)) = 0   
POL(cons.0-1(x1, x2)) = 0   
POL(cons.1-0(x1, x2)) = 0   
POL(cons.1-1(x1, x2)) = 0   
POL(dbl.0(x1)) = 0   
POL(dbl.1(x1)) = 0   
POL(dbls.0(x1)) = 0   
POL(dbls.1(x1)) = 0   
POL(from.0(x1)) = 1   
POL(from.1(x1)) = 0   
POL(indx.0-0(x1, x2)) = 0   
POL(indx.0-1(x1, x2)) = 0   
POL(indx.1-0(x1, x2)) = 0   
POL(indx.1-1(x1, x2)) = 0   
POL(mark.0(x1)) = 0   
POL(mark.1(x1)) = 0   
POL(nil.) = 0   
POL(s.0(x1)) = 0   
POL(s.1(x1)) = 0   
POL(sel.0-0(x1, x2)) = 1   
POL(sel.0-1(x1, x2)) = 0   
POL(sel.1-0(x1, x2)) = 0   
POL(sel.1-1(x1, x2)) = 0   

The following usable rules [17] were oriented:

indx.0-1(active.1(X1), X2) → indx.1-1(X1, X2)
sel.0-1(mark.0(X1), X2) → sel.0-1(X1, X2)
sel.0-1(active.0(X1), X2) → sel.0-1(X1, X2)
sel.0-1(mark.1(X1), X2) → sel.1-1(X1, X2)
indx.0-0(X1, active.1(X2)) → indx.0-1(X1, X2)
indx.1-0(X1, active.1(X2)) → indx.1-1(X1, X2)
sel.0-0(mark.1(X1), X2) → sel.1-0(X1, X2)
sel.0-0(active.1(X1), X2) → sel.1-0(X1, X2)
indx.0-1(mark.1(X1), X2) → indx.1-1(X1, X2)
indx.0-1(active.0(X1), X2) → indx.0-1(X1, X2)
indx.0-1(mark.0(X1), X2) → indx.0-1(X1, X2)
indx.1-0(X1, mark.0(X2)) → indx.1-0(X1, X2)
indx.1-0(X1, active.0(X2)) → indx.1-0(X1, X2)
sel.0-0(X1, mark.1(X2)) → sel.0-1(X1, X2)
sel.1-0(X1, active.1(X2)) → sel.1-1(X1, X2)
sel.0-1(active.1(X1), X2) → sel.1-1(X1, X2)
indx.0-0(X1, mark.1(X2)) → indx.0-1(X1, X2)
indx.1-0(X1, mark.1(X2)) → indx.1-1(X1, X2)
indx.0-0(mark.1(X1), X2) → indx.1-0(X1, X2)
sel.0-0(active.0(X1), X2) → sel.0-0(X1, X2)
sel.0-0(mark.0(X1), X2) → sel.0-0(X1, X2)
sel.0-0(X1, active.0(X2)) → sel.0-0(X1, X2)
sel.0-0(X1, mark.0(X2)) → sel.0-0(X1, X2)
indx.0-0(active.1(X1), X2) → indx.1-0(X1, X2)
indx.0-0(X1, active.0(X2)) → indx.0-0(X1, X2)
indx.0-0(mark.0(X1), X2) → indx.0-0(X1, X2)
indx.0-0(active.0(X1), X2) → indx.0-0(X1, X2)
indx.0-0(X1, mark.0(X2)) → indx.0-0(X1, X2)
sel.1-0(X1, mark.1(X2)) → sel.1-1(X1, X2)
sel.1-0(X1, mark.0(X2)) → sel.1-0(X1, X2)
sel.1-0(X1, active.0(X2)) → sel.1-0(X1, X2)
sel.0-0(X1, active.1(X2)) → sel.0-1(X1, X2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Narrowing
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ SemLabProof
                                                                          ↳ QDP
                                                                            ↳ DependencyGraphProof
                                                                              ↳ QDP
                                                                                ↳ QDPOrderProof
QDP
                                                                        ↳ SemLabProof2

Q DP problem:
The TRS P consists of the following rules:

MARK.1(sel.0-0(y0, cons.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(cons.1-1(x0, x1))))
MARK.0(dbls.1(sel.0-1(x0, x1))) → ACTIVE.0(dbls.0(active.1(sel.0-0(mark.0(x0), mark.1(x1)))))
ACTIVE.1(sel.0-0(0., cons.1-0(X, Y))) → MARK.1(X)
MARK.1(sel.0-0(y0, x1)) → ACTIVE.1(sel.0-0(mark.0(y0), x1))
MARK.0(dbls.1(indx.1-1(x0, x1))) → ACTIVE.0(dbls.0(active.1(indx.0-1(mark.1(x0), x1))))
MARK.1(sel.1-0(sel.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.1(x0), mark.1(x1))), mark.0(y1)))
ACTIVE.1(sel.0-0(s.1(X), cons.0-0(Y, Z))) → MARK.1(sel.1-0(X, Z))
MARK.1(sel.1-0(y0, x1)) → ACTIVE.1(sel.0-0(mark.1(y0), x1))
MARK.0(dbl.0(X)) → MARK.0(X)
MARK.1(sel.1-0(X1, X2)) → MARK.0(X2)
MARK.1(sel.0-0(from.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(from.1(x0)), mark.0(y1)))
ACTIVE.0(dbls.0(cons.0-0(y0, active.0(x0)))) → MARK.0(cons.0-0(dbl.0(y0), dbls.0(x0)))
MARK.1(indx.0-0(X1, X2)) → MARK.0(X1)
MARK.0(dbls.0(cons.0-1(x0, x1))) → ACTIVE.0(dbls.0(active.0(cons.0-1(x0, x1))))
MARK.1(sel.1-1(indx.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-0(mark.0(x0), x1)), mark.1(y1)))
MARK.1(sel.0-0(dbls.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbls.0(mark.0(x0))), mark.0(y1)))
MARK.1(sel.1-1(y0, sel.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(sel.0-0(mark.0(x0), mark.0(x1)))))
MARK.1(sel.1-0(y0, s.1(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(s.1(x0))))
ACTIVE.0(from.0(X)) → MARK.0(cons.0-0(X, from.0(s.0(X))))
MARK.0(dbl.0(s.1(x0))) → ACTIVE.0(dbl.0(active.0(s.1(x0))))
MARK.1(sel.1-0(y0, dbls.0(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(dbls.0(mark.0(x0)))))
MARK.1(sel.0-0(y0, dbls.0(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(dbls.0(mark.0(x0)))))
MARK.0(dbl.1(sel.1-0(x0, x1))) → ACTIVE.0(dbl.0(active.1(sel.0-0(mark.1(x0), mark.0(x1)))))
MARK.0(dbls.1(X)) → MARK.1(X)
MARK.1(sel.1-1(sel.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.0(x0), mark.1(x1))), mark.1(y1)))
MARK.1(sel.0-0(cons.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.0-1(x0, x1)), mark.0(y1)))
MARK.1(sel.0-1(y0, sel.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(sel.0-0(mark.1(x0), mark.0(x1)))))
MARK.1(sel.0-0(cons.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.0-0(x0, x1)), mark.0(y1)))
MARK.1(indx.0-1(X1, X2)) → MARK.0(X1)
MARK.1(sel.0-1(X1, X2)) → MARK.0(X1)
MARK.0(dbl.1(indx.0-0(x0, x1))) → ACTIVE.0(dbl.0(active.1(indx.0-0(mark.0(x0), x1))))
MARK.0(dbls.0(dbls.0(x0))) → ACTIVE.0(dbls.0(active.0(dbls.0(mark.0(x0)))))
ACTIVE.1(sel.0-0(s.0(X), cons.0-0(Y, Z))) → MARK.1(sel.0-0(X, Z))
MARK.1(sel.1-1(X1, X2)) → MARK.1(X1)
MARK.0(dbl.0(s.0(x0))) → ACTIVE.0(dbl.0(active.0(s.0(x0))))
MARK.0(dbl.0(from.1(x0))) → ACTIVE.0(dbl.0(active.0(from.1(x0))))
MARK.0(dbl.1(sel.1-1(x0, x1))) → ACTIVE.0(dbl.0(active.1(sel.0-0(mark.1(x0), mark.1(x1)))))
MARK.1(sel.0-1(dbls.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbls.0(mark.0(x0))), mark.1(y1)))
ACTIVE.0(dbls.0(cons.0-1(active.0(x0), y1))) → MARK.0(cons.0-0(dbl.0(x0), dbls.1(y1)))
MARK.1(sel.1-0(y0, from.0(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(from.0(x0))))
MARK.1(sel.0-1(nil., y1)) → ACTIVE.1(sel.0-0(active.0(nil.), mark.1(y1)))
MARK.1(sel.0-1(y0, indx.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(indx.0-0(mark.0(x0), x1))))
MARK.1(sel.0-1(y0, indx.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(indx.0-1(mark.1(x0), x1))))
MARK.1(sel.0-1(s.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(s.0(x0)), mark.1(y1)))
MARK.1(sel.0-0(dbl.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbl.0(mark.1(x0))), mark.0(y1)))
MARK.1(sel.1-0(y0, cons.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(cons.0-1(x0, x1))))
MARK.1(sel.0-0(X1, X2)) → MARK.0(X1)
MARK.0(dbls.0(s.0(x0))) → ACTIVE.0(dbls.0(active.0(s.0(x0))))
MARK.1(sel.0-0(y0, from.1(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(from.1(x0))))
ACTIVE.0(dbls.0(cons.1-0(y0, active.0(x0)))) → MARK.0(cons.0-0(dbl.1(y0), dbls.0(x0)))
MARK.1(sel.0-0(y0, dbl.1(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(dbl.0(mark.1(x0)))))
MARK.0(dbls.0(x0)) → ACTIVE.0(dbls.0(x0))
MARK.1(sel.0-1(dbls.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbls.0(mark.1(x0))), mark.1(y1)))
MARK.1(sel.0-0(from.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(from.0(x0)), mark.0(y1)))
MARK.0(dbls.0(X)) → MARK.0(X)
ACTIVE.0(dbls.0(cons.0-0(y0, active.1(x0)))) → MARK.0(cons.0-0(dbl.0(y0), dbls.1(x0)))
ACTIVE.1(sel.0-0(s.0(X), cons.0-1(Y, Z))) → MARK.1(sel.0-1(X, Z))
MARK.1(sel.1-0(y0, 0.)) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(0.)))
MARK.1(sel.0-0(y0, cons.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(cons.0-1(x0, x1))))
ACTIVE.1(sel.0-0(0., cons.1-1(X, Y))) → MARK.1(X)
MARK.0(dbl.0(from.0(x0))) → ACTIVE.0(dbl.0(active.0(from.0(x0))))
MARK.1(sel.1-1(y0, indx.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(indx.0-1(mark.0(x0), x1))))
MARK.1(sel.0-0(y0, dbls.1(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(dbls.0(mark.1(x0)))))
ACTIVE.1(sel.0-0(0., cons.0-0(X, Y))) → MARK.0(X)
MARK.0(dbl.0(dbl.1(x0))) → ACTIVE.0(dbl.0(active.0(dbl.0(mark.1(x0)))))
MARK.1(sel.1-0(sel.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.1(x0), mark.0(x1))), mark.0(y1)))
ACTIVE.0(dbls.0(cons.0-0(y0, mark.0(x0)))) → MARK.0(cons.0-0(dbl.0(y0), dbls.0(x0)))
ACTIVE.1(sel.0-0(s.0(X), cons.1-0(Y, Z))) → MARK.1(sel.0-0(X, Z))
MARK.0(dbls.0(s.1(x0))) → ACTIVE.0(dbls.0(active.0(s.1(x0))))
MARK.0(dbls.0(dbls.1(x0))) → ACTIVE.0(dbls.0(active.0(dbls.0(mark.1(x0)))))
MARK.1(sel.0-0(dbls.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbls.0(mark.1(x0))), mark.0(y1)))
MARK.0(dbl.0(dbl.0(x0))) → ACTIVE.0(dbl.0(active.0(dbl.0(mark.0(x0)))))
MARK.0(dbls.0(from.1(x0))) → ACTIVE.0(dbls.0(active.0(from.1(x0))))
ACTIVE.1(sel.0-0(s.1(X), cons.0-1(Y, Z))) → MARK.1(sel.1-1(X, Z))
MARK.1(sel.0-0(s.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(s.1(x0)), mark.0(y1)))
MARK.1(sel.0-1(x0, y1)) → ACTIVE.1(sel.0-0(x0, mark.1(y1)))
MARK.1(sel.1-1(y0, sel.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(sel.0-0(mark.1(x0), mark.0(x1)))))
MARK.1(sel.0-1(X1, X2)) → MARK.1(X2)
MARK.1(sel.0-0(y0, cons.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(cons.1-0(x0, x1))))
MARK.1(sel.0-1(from.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(from.1(x0)), mark.1(y1)))
MARK.0(dbl.0(x0)) → ACTIVE.0(dbl.0(x0))
MARK.0(dbls.0(dbl.0(x0))) → ACTIVE.0(dbls.0(active.0(dbl.0(mark.0(x0)))))
MARK.1(sel.0-1(cons.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.1-1(x0, x1)), mark.1(y1)))
MARK.1(sel.0-1(y0, indx.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(indx.0-1(mark.0(x0), x1))))
MARK.1(sel.1-0(indx.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-1(mark.1(x0), x1)), mark.0(y1)))
MARK.0(dbls.1(sel.1-1(x0, x1))) → ACTIVE.0(dbls.0(active.1(sel.0-0(mark.1(x0), mark.1(x1)))))
MARK.1(sel.1-0(y0, dbls.1(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(dbls.0(mark.1(x0)))))
MARK.1(sel.1-1(y0, sel.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(sel.0-0(mark.0(x0), mark.1(x1)))))
MARK.0(dbl.1(X)) → MARK.1(X)
MARK.1(sel.1-0(sel.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.0(x0), mark.1(x1))), mark.0(y1)))
ACTIVE.0(dbls.0(cons.0-0(active.1(x0), y1))) → MARK.0(cons.0-0(dbl.1(x0), dbls.0(y1)))
MARK.1(sel.1-1(X1, X2)) → MARK.1(X2)
MARK.1(sel.0-1(from.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(from.0(x0)), mark.1(y1)))
MARK.0(dbls.1(sel.1-0(x0, x1))) → ACTIVE.0(dbls.0(active.1(sel.0-0(mark.1(x0), mark.0(x1)))))
MARK.1(sel.0-0(y0, from.0(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(from.0(x0))))
MARK.1(sel.1-1(y0, indx.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(indx.0-0(mark.1(x0), x1))))
MARK.0(dbls.0(cons.1-1(x0, x1))) → ACTIVE.0(dbls.0(active.0(cons.1-1(x0, x1))))
MARK.1(sel.1-0(indx.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-0(mark.1(x0), x1)), mark.0(y1)))
MARK.1(sel.0-1(y0, indx.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(indx.0-0(mark.1(x0), x1))))
MARK.1(sel.1-1(sel.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.1(x0), mark.1(x1))), mark.1(y1)))
MARK.1(indx.1-0(X1, X2)) → MARK.1(X1)
MARK.0(dbls.1(sel.0-0(x0, x1))) → ACTIVE.0(dbls.0(active.1(sel.0-0(mark.0(x0), mark.0(x1)))))
MARK.1(sel.1-1(sel.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.0(x0), mark.0(x1))), mark.1(y1)))
ACTIVE.1(sel.0-0(s.0(X), cons.1-1(Y, Z))) → MARK.1(sel.0-1(X, Z))
MARK.1(sel.1-0(y0, cons.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(cons.1-1(x0, x1))))
MARK.0(dbl.0(cons.0-1(x0, x1))) → ACTIVE.0(dbl.0(active.0(cons.0-1(x0, x1))))
ACTIVE.0(dbls.0(cons.0-0(mark.1(x0), y1))) → MARK.0(cons.0-0(dbl.1(x0), dbls.0(y1)))
MARK.1(sel.0-1(y0, sel.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(sel.0-0(mark.0(x0), mark.0(x1)))))
ACTIVE.0(dbl.0(s.0(active.0(x0)))) → MARK.0(s.0(s.0(dbl.0(x0))))
MARK.0(dbl.0(dbls.0(x0))) → ACTIVE.0(dbl.0(active.0(dbls.0(mark.0(x0)))))
MARK.1(sel.1-1(y0, sel.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(sel.0-0(mark.1(x0), mark.1(x1)))))
MARK.1(sel.0-1(0., y1)) → ACTIVE.1(sel.0-0(active.0(0.), mark.1(y1)))
MARK.1(sel.1-0(y0, cons.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(cons.0-0(x0, x1))))
ACTIVE.0(dbls.0(cons.0-0(mark.0(x0), y1))) → MARK.0(cons.0-0(dbl.0(x0), dbls.0(y1)))
MARK.1(sel.0-0(0., y1)) → ACTIVE.1(sel.0-0(active.0(0.), mark.0(y1)))
MARK.1(sel.0-0(y0, 0.)) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(0.)))
ACTIVE.1(sel.0-0(s.1(X), cons.1-1(Y, Z))) → MARK.1(sel.1-1(X, Z))
MARK.1(sel.1-0(indx.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-1(mark.0(x0), x1)), mark.0(y1)))
MARK.1(sel.0-0(y0, cons.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(cons.0-0(x0, x1))))
MARK.1(sel.0-1(cons.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.0-1(x0, x1)), mark.1(y1)))
MARK.0(dbl.1(sel.0-1(x0, x1))) → ACTIVE.0(dbl.0(active.1(sel.0-0(mark.0(x0), mark.1(x1)))))
MARK.0(dbls.1(indx.0-1(x0, x1))) → ACTIVE.0(dbls.0(active.1(indx.0-1(mark.0(x0), x1))))
MARK.1(sel.0-1(s.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(s.1(x0)), mark.1(y1)))
MARK.1(sel.1-1(indx.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-0(mark.1(x0), x1)), mark.1(y1)))
MARK.1(sel.0-0(x0, y1)) → ACTIVE.1(sel.0-0(x0, mark.0(y1)))
MARK.1(sel.0-0(dbl.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbl.0(mark.0(x0))), mark.0(y1)))
MARK.0(dbl.0(cons.1-1(x0, x1))) → ACTIVE.0(dbl.0(active.0(cons.1-1(x0, x1))))
MARK.0(dbls.0(dbl.1(x0))) → ACTIVE.0(dbls.0(active.0(dbl.0(mark.1(x0)))))
MARK.1(sel.0-1(y0, sel.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(sel.0-0(mark.1(x0), mark.1(x1)))))
MARK.0(dbls.0(from.0(x0))) → ACTIVE.0(dbls.0(active.0(from.0(x0))))
MARK.0(dbl.1(indx.1-0(x0, x1))) → ACTIVE.0(dbl.0(active.1(indx.0-0(mark.1(x0), x1))))
MARK.0(dbl.0(cons.1-0(x0, x1))) → ACTIVE.0(dbl.0(active.0(cons.1-0(x0, x1))))
MARK.1(sel.0-0(cons.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.1-1(x0, x1)), mark.0(y1)))
MARK.1(sel.0-1(cons.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.1-0(x0, x1)), mark.1(y1)))
MARK.1(sel.0-1(dbl.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbl.0(mark.0(x0))), mark.1(y1)))
MARK.1(sel.1-1(y0, indx.0-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(indx.0-0(mark.0(x0), x1))))
MARK.0(dbls.0(cons.1-0(x0, x1))) → ACTIVE.0(dbls.0(active.0(cons.1-0(x0, x1))))
MARK.0(dbls.1(indx.1-0(x0, x1))) → ACTIVE.0(dbls.0(active.1(indx.0-0(mark.1(x0), x1))))
MARK.0(dbl.1(sel.0-0(x0, x1))) → ACTIVE.0(dbl.0(active.1(sel.0-0(mark.0(x0), mark.0(x1)))))
MARK.0(dbl.1(indx.1-1(x0, x1))) → ACTIVE.0(dbl.0(active.1(indx.0-1(mark.1(x0), x1))))
ACTIVE.0(dbls.0(cons.1-0(y0, mark.0(x0)))) → MARK.0(cons.0-0(dbl.1(y0), dbls.0(x0)))
MARK.0(dbl.0(cons.0-0(x0, x1))) → ACTIVE.0(dbl.0(active.0(cons.0-0(x0, x1))))
MARK.1(sel.0-1(cons.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.0-0(x0, x1)), mark.1(y1)))
MARK.1(indx.1-1(X1, X2)) → MARK.1(X1)
MARK.1(sel.1-1(sel.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.1(x0), mark.0(x1))), mark.1(y1)))
MARK.1(sel.1-1(indx.1-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-1(mark.1(x0), x1)), mark.1(y1)))
MARK.1(sel.1-1(y0, indx.1-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.1(indx.0-1(mark.1(x0), x1))))
MARK.1(sel.0-0(cons.1-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.0(cons.1-0(x0, x1)), mark.0(y1)))
ACTIVE.0(dbls.0(cons.0-0(y0, mark.1(x0)))) → MARK.0(cons.0-0(dbl.0(y0), dbls.1(x0)))
MARK.1(sel.1-0(y0, dbl.1(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(dbl.0(mark.1(x0)))))
ACTIVE.0(dbl.0(s.0(mark.0(x0)))) → MARK.0(s.0(s.0(dbl.0(x0))))
MARK.1(sel.1-0(y0, dbl.0(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(dbl.0(mark.0(x0)))))
ACTIVE.0(dbls.0(cons.0-0(active.0(x0), y1))) → MARK.0(cons.0-0(dbl.0(x0), dbls.0(y1)))
MARK.0(dbls.1(indx.0-0(x0, x1))) → ACTIVE.0(dbls.0(active.1(indx.0-0(mark.0(x0), x1))))
MARK.0(dbl.0(dbls.1(x0))) → ACTIVE.0(dbl.0(active.0(dbls.0(mark.1(x0)))))
MARK.1(sel.0-0(s.0(x0), y1)) → ACTIVE.1(sel.0-0(active.0(s.0(x0)), mark.0(y1)))
MARK.1(sel.1-0(y0, nil.)) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(nil.)))
MARK.1(sel.1-0(indx.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-0(mark.0(x0), x1)), mark.0(y1)))
MARK.1(sel.0-1(y0, sel.0-1(x0, x1))) → ACTIVE.1(sel.0-0(mark.0(y0), active.1(sel.0-0(mark.0(x0), mark.1(x1)))))
ACTIVE.0(dbls.0(cons.0-1(mark.0(x0), y1))) → MARK.0(cons.0-0(dbl.0(x0), dbls.1(y1)))
MARK.1(sel.1-0(sel.0-0(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(sel.0-0(mark.0(x0), mark.0(x1))), mark.0(y1)))
MARK.1(sel.0-0(X1, X2)) → MARK.0(X2)
MARK.0(dbls.0(cons.0-0(x0, x1))) → ACTIVE.0(dbls.0(active.0(cons.0-0(x0, x1))))
MARK.0(from.0(X)) → ACTIVE.0(from.0(X))
MARK.1(sel.0-0(nil., y1)) → ACTIVE.1(sel.0-0(active.0(nil.), mark.0(y1)))
MARK.1(sel.0-0(y0, nil.)) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(nil.)))
ACTIVE.1(sel.0-0(s.1(X), cons.1-0(Y, Z))) → MARK.1(sel.1-0(X, Z))
MARK.1(sel.0-1(dbl.1(x0), y1)) → ACTIVE.1(sel.0-0(active.0(dbl.0(mark.1(x0))), mark.1(y1)))
MARK.1(sel.1-0(y0, s.0(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(s.0(x0))))
MARK.1(sel.1-0(y0, from.1(x0))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(from.1(x0))))
MARK.1(sel.0-0(y0, s.0(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(s.0(x0))))
MARK.1(sel.0-0(y0, dbl.0(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(dbl.0(mark.0(x0)))))
ACTIVE.1(sel.0-0(0., cons.0-1(X, Y))) → MARK.0(X)
MARK.0(dbl.1(indx.0-1(x0, x1))) → ACTIVE.0(dbl.0(active.1(indx.0-1(mark.0(x0), x1))))
MARK.1(sel.1-1(indx.0-1(x0, x1), y1)) → ACTIVE.1(sel.0-0(active.1(indx.0-1(mark.0(x0), x1)), mark.1(y1)))
MARK.1(sel.1-0(y0, cons.1-0(x0, x1))) → ACTIVE.1(sel.0-0(mark.1(y0), active.0(cons.1-0(x0, x1))))
MARK.1(sel.0-0(y0, s.1(x0))) → ACTIVE.1(sel.0-0(mark.0(y0), active.0(s.1(x0))))
MARK.1(sel.1-0(X1, X2)) → MARK.1(X1)

The TRS R consists of the following rules:

from.0(active.0(X)) → from.0(X)
active.1(sel.0-0(0., cons.0-0(X, Y))) → mark.0(X)
cons.0-1(active.0(X1), X2) → cons.0-1(X1, X2)
active.0(dbl.0(0.)) → mark.0(0.)
indx.0-0(X1, active.1(X2)) → indx.0-1(X1, X2)
active.1(indx.0-0(cons.1-1(X, Y), Z)) → mark.0(cons.1-1(sel.1-0(X, Z), indx.1-0(Y, Z)))
sel.0-1(active.0(X1), X2) → sel.0-1(X1, X2)
active.1(sel.0-0(s.1(X), cons.1-0(Y, Z))) → mark.1(sel.1-0(X, Z))
cons.0-0(active.0(X1), X2) → cons.0-0(X1, X2)
dbls.0(active.1(X)) → dbls.1(X)
indx.1-0(X1, active.1(X2)) → indx.1-1(X1, X2)
active.1(indx.0-0(cons.0-1(X, Y), Z)) → mark.0(cons.1-1(sel.0-0(X, Z), indx.1-0(Y, Z)))
active.0(dbls.0(cons.1-1(X, Y))) → mark.0(cons.0-0(dbl.1(X), dbls.1(Y)))
dbl.0(active.0(X)) → dbl.0(X)
active.0(from.1(X)) → mark.0(cons.1-0(X, from.0(s.1(X))))
active.1(sel.0-0(0., cons.0-1(X, Y))) → mark.0(X)
sel.0-0(mark.1(X1), X2) → sel.1-0(X1, X2)
indx.0-0(active.0(X1), X2) → indx.0-0(X1, X2)
mark.0(s.1(X)) → active.0(s.1(X))
cons.0-0(X1, mark.0(X2)) → cons.0-0(X1, X2)
dbl.0(mark.1(X)) → dbl.1(X)
indx.0-1(active.1(X1), X2) → indx.1-1(X1, X2)
mark.0(s.0(X)) → active.0(s.0(X))
mark.1(sel.1-0(X1, X2)) → active.1(sel.0-0(mark.1(X1), mark.0(X2)))
mark.0(cons.0-1(X1, X2)) → active.0(cons.0-1(X1, X2))
dbls.0(mark.1(X)) → dbls.1(X)
active.1(sel.0-0(0., cons.1-1(X, Y))) → mark.1(X)
active.1(indx.0-1(cons.0-0(X, Y), Z)) → mark.0(cons.1-1(sel.0-1(X, Z), indx.0-1(Y, Z)))
active.0(dbls.0(cons.0-0(X, Y))) → mark.0(cons.0-0(dbl.0(X), dbls.0(Y)))
mark.0(cons.1-1(X1, X2)) → active.0(cons.1-1(X1, X2))
sel.0-1(mark.1(X1), X2) → sel.1-1(X1, X2)
cons.0-0(X1, active.0(X2)) → cons.0-0(X1, X2)
cons.1-0(X1, mark.1(X2)) → cons.1-1(X1, X2)
sel.0-1(mark.0(X1), X2) → sel.0-1(X1, X2)
indx.0-1(active.0(X1), X2) → indx.0-1(X1, X2)
sel.0-0(active.0(X1), X2) → sel.0-0(X1, X2)
dbl.0(mark.0(X)) → dbl.0(X)
cons.0-1(mark.1(X1), X2) → cons.1-1(X1, X2)
mark.0(nil.) → active.0(nil.)
indx.0-0(X1, mark.0(X2)) → indx.0-0(X1, X2)
mark.1(sel.1-1(X1, X2)) → active.1(sel.0-0(mark.1(X1), mark.1(X2)))
indx.0-0(mark.0(X1), X2) → indx.0-0(X1, X2)
mark.1(indx.0-0(X1, X2)) → active.1(indx.0-0(mark.0(X1), X2))
active.0(dbls.0(cons.1-0(X, Y))) → mark.0(cons.0-0(dbl.1(X), dbls.0(Y)))
sel.0-0(mark.0(X1), X2) → sel.0-0(X1, X2)
indx.0-0(active.1(X1), X2) → indx.1-0(X1, X2)
active.1(indx.0-0(nil., X)) → mark.0(nil.)
indx.1-0(X1, mark.1(X2)) → indx.1-1(X1, X2)
indx.0-0(mark.1(X1), X2) → indx.1-0(X1, X2)
mark.1(indx.0-1(X1, X2)) → active.1(indx.0-1(mark.0(X1), X2))
mark.1(indx.1-0(X1, X2)) → active.1(indx.0-0(mark.1(X1), X2))
active.1(sel.0-0(s.1(X), cons.0-0(Y, Z))) → mark.1(sel.1-0(X, Z))
active.1(sel.0-0(s.0(X), cons.0-1(Y, Z))) → mark.1(sel.0-1(X, Z))
active.1(indx.0-0(cons.0-0(X, Y), Z)) → mark.0(cons.1-1(sel.0-0(X, Z), indx.0-0(Y, Z)))
mark.0(dbls.1(X)) → active.0(dbls.0(mark.1(X)))
mark.1(sel.0-1(X1, X2)) → active.1(sel.0-0(mark.0(X1), mark.1(X2)))
active.1(indx.0-1(cons.1-1(X, Y), Z)) → mark.0(cons.1-1(sel.1-1(X, Z), indx.1-1(Y, Z)))
indx.0-0(X1, mark.1(X2)) → indx.0-1(X1, X2)
active.0(dbls.0(nil.)) → mark.0(nil.)
sel.0-1(active.1(X1), X2) → sel.1-1(X1, X2)
cons.1-0(X1, active.0(X2)) → cons.1-0(X1, X2)
cons.0-0(X1, active.1(X2)) → cons.0-1(X1, X2)
sel.1-0(X1, active.1(X2)) → sel.1-1(X1, X2)
cons.0-0(X1, mark.1(X2)) → cons.0-1(X1, X2)
mark.1(indx.1-1(X1, X2)) → active.1(indx.0-1(mark.1(X1), X2))
cons.1-0(X1, active.1(X2)) → cons.1-1(X1, X2)
from.0(mark.0(X)) → from.0(X)
mark.0(dbl.1(X)) → active.0(dbl.0(mark.1(X)))
mark.0(from.1(X)) → active.0(from.1(X))
indx.1-0(X1, mark.0(X2)) → indx.1-0(X1, X2)
active.0(dbls.0(cons.0-1(X, Y))) → mark.0(cons.0-0(dbl.0(X), dbls.1(Y)))
mark.0(dbls.0(X)) → active.0(dbls.0(mark.0(X)))
active.1(sel.0-0(s.1(X), cons.0-1(Y, Z))) → mark.1(sel.1-1(X, Z))
dbl.0(active.1(X)) → dbl.1(X)
cons.0-1(mark.0(X1), X2) → cons.0-1(X1, X2)
sel.0-0(X1, mark.0(X2)) → sel.0-0(X1, X2)
mark.0(0.) → active.0(0.)
active.0(dbl.0(s.1(X))) → mark.0(s.0(s.0(dbl.1(X))))
active.1(sel.0-0(0., cons.1-0(X, Y))) → mark.1(X)
sel.0-0(X1, mark.1(X2)) → sel.0-1(X1, X2)
cons.0-0(active.1(X1), X2) → cons.1-0(X1, X2)
indx.1-0(X1, active.0(X2)) → indx.1-0(X1, X2)
dbls.0(active.0(X)) → dbls.0(X)
active.0(from.0(X)) → mark.0(cons.0-0(X, from.0(s.0(X))))
active.1(sel.0-0(s.1(X), cons.1-1(Y, Z))) → mark.1(sel.1-1(X, Z))
cons.1-0(X1, mark.0(X2)) → cons.1-0(X1, X2)
indx.0-1(mark.0(X1), X2) → indx.0-1(X1, X2)
mark.0(cons.1-0(X1, X2)) → active.0(cons.1-0(X1, X2))
active.1(sel.0-0(s.0(X), cons.1-1(Y, Z))) → mark.1(sel.0-1(X, Z))
sel.1-0(X1, active.0(X2)) → sel.1-0(X1, X2)
indx.0-1(mark.1(X1), X2) → indx.1-1(X1, X2)
sel.0-0(X1, active.0(X2)) → sel.0-0(X1, X2)
active.1(indx.0-1(cons.0-1(X, Y), Z)) → mark.0(cons.1-1(sel.0-1(X, Z), indx.1-1(Y, Z)))
s.0(active.0(X)) → s.0(X)
cons.0-1(active.1(X1), X2) → cons.1-1(X1, X2)
sel.0-0(active.1(X1), X2) → sel.1-0(X1, X2)
active.1(sel.0-0(s.0(X), cons.1-0(Y, Z))) → mark.1(sel.0-0(X, Z))
s.0(mark.1(X)) → s.1(X)
mark.0(dbl.0(X)) → active.0(dbl.0(mark.0(X)))
sel.1-0(X1, mark.0(X2)) → sel.1-0(X1, X2)
indx.0-0(X1, active.0(X2)) → indx.0-0(X1, X2)
active.1(indx.0-1(nil., X)) → mark.0(nil.)
sel.0-0(X1, active.1(X2)) → sel.0-1(X1, X2)
mark.0(cons.0-0(X1, X2)) → active.0(cons.0-0(X1, X2))
mark.0(from.0(X)) → active.0(from.0(X))
from.0(active.1(X)) → from.1(X)
s.0(active.1(X)) → s.1(X)
active.0(dbl.0(s.0(X))) → mark.0(s.0(s.0(dbl.0(X))))
from.0(mark.1(X)) → from.1(X)
cons.0-0(mark.1(X1), X2) → cons.1-0(X1, X2)
sel.1-0(X1, mark.1(X2)) → sel.1-1(X1, X2)
active.1(indx.0-1(cons.1-0(X, Y), Z)) → mark.0(cons.1-1(sel.1-1(X, Z), indx.0-1(Y, Z)))
active.1(indx.0-0(cons.1-0(X, Y), Z)) → mark.0(cons.1-1(sel.1-0(X, Z), indx.0-0(Y, Z)))
s.0(mark.0(X)) → s.0(X)
mark.1(sel.0-0(X1, X2)) → active.1(sel.0-0(mark.0(X1), mark.0(X2)))
dbls.0(mark.0(X)) → dbls.0(X)
active.1(sel.0-0(s.0(X), cons.0-0(Y, Z))) → mark.1(sel.0-0(X, Z))
cons.0-0(mark.0(X1), X2) → cons.0-0(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
As can be seen after transforming the QDP problem by semantic labelling [33] and then some rule deleting processors, only certain labelled rules and pairs can be used. Hence, we only have to consider all unlabelled pairs and rules (without the decreasing rules for quasi-models).

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Narrowing
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ SemLabProof
                                                                        ↳ SemLabProof2
QDP

Q DP problem:
The TRS P consists of the following rules:

MARK(indx(X1, X2)) → MARK(X1)
MARK(sel(cons(x0, x1), y1)) → ACTIVE(sel(active(cons(x0, x1)), mark(y1)))
MARK(sel(from(x0), y1)) → ACTIVE(sel(active(from(x0)), mark(y1)))
MARK(sel(s(x0), y1)) → ACTIVE(sel(active(s(x0)), mark(y1)))
MARK(dbl(sel(x0, x1))) → ACTIVE(dbl(active(sel(mark(x0), mark(x1)))))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(sel(y0, indx(x0, x1))) → ACTIVE(sel(mark(y0), active(indx(mark(x0), x1))))
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(dbl(dbl(x0))) → ACTIVE(dbl(active(dbl(mark(x0)))))
MARK(dbls(indx(x0, x1))) → ACTIVE(dbls(active(indx(mark(x0), x1))))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(dbl(x0), y1)) → ACTIVE(sel(active(dbl(mark(x0))), mark(y1)))
MARK(dbl(s(x0))) → ACTIVE(dbl(active(s(x0))))
MARK(dbl(x0)) → ACTIVE(dbl(x0))
MARK(dbl(X)) → MARK(X)
MARK(dbl(cons(x0, x1))) → ACTIVE(dbl(active(cons(x0, x1))))
MARK(sel(y0, s(x0))) → ACTIVE(sel(mark(y0), active(s(x0))))
MARK(sel(y0, dbl(x0))) → ACTIVE(sel(mark(y0), active(dbl(mark(x0)))))
ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel(y0, sel(x0, x1))) → ACTIVE(sel(mark(y0), active(sel(mark(x0), mark(x1)))))
MARK(dbls(sel(x0, x1))) → ACTIVE(dbls(active(sel(mark(x0), mark(x1)))))
MARK(dbl(from(x0))) → ACTIVE(dbl(active(from(x0))))
MARK(sel(dbls(x0), y1)) → ACTIVE(sel(active(dbls(mark(x0))), mark(y1)))
MARK(dbl(indx(x0, x1))) → ACTIVE(dbl(active(indx(mark(x0), x1))))
MARK(sel(y0, cons(x0, x1))) → ACTIVE(sel(mark(y0), active(cons(x0, x1))))
MARK(dbls(from(x0))) → ACTIVE(dbls(active(from(x0))))
MARK(dbls(dbl(x0))) → ACTIVE(dbls(active(dbl(mark(x0)))))
ACTIVE(dbl(s(active(x0)))) → MARK(s(s(dbl(x0))))
MARK(sel(y0, dbls(x0))) → ACTIVE(sel(mark(y0), active(dbls(mark(x0)))))
MARK(dbl(dbls(x0))) → ACTIVE(dbl(active(dbls(mark(x0)))))
MARK(dbls(x0)) → ACTIVE(dbls(x0))
MARK(dbls(X)) → MARK(X)
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(y0, x1)) → ACTIVE(sel(mark(y0), x1))
MARK(dbls(s(x0))) → ACTIVE(dbls(active(s(x0))))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel(y0, 0)) → ACTIVE(sel(mark(y0), active(0)))
MARK(sel(0, y1)) → ACTIVE(sel(active(0), mark(y1)))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(sel(x0, x1), y1)) → ACTIVE(sel(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(sel(indx(x0, x1), y1)) → ACTIVE(sel(active(indx(mark(x0), x1)), mark(y1)))
MARK(sel(x0, y1)) → ACTIVE(sel(x0, mark(y1)))
MARK(dbls(dbls(x0))) → ACTIVE(dbls(active(dbls(mark(x0)))))
MARK(sel(y0, from(x0))) → ACTIVE(sel(mark(y0), active(from(x0))))
MARK(from(X)) → ACTIVE(from(X))
MARK(sel(y0, nil)) → ACTIVE(sel(mark(y0), active(nil)))
MARK(sel(nil, y1)) → ACTIVE(sel(active(nil), mark(y1)))
MARK(dbls(cons(x0, x1))) → ACTIVE(dbls(active(cons(x0, x1))))
MARK(sel(X1, X2)) → MARK(X2)
ACTIVE(dbl(s(mark(x0)))) → MARK(s(s(dbl(x0))))

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.